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ABSTRACT 
 
 
 
 
This thesis investigates the application of Multi-layer Perceptron (MLP) type Neural Networks to clinical 
decision-making problems in Psychiatry. Only a small number of studies have previously investigated their 
use in Psychiatry. More widely though, in the past decade there has been an increasing interest and several 
hundred investigations of the application of MLPs to clinical decision-making problems, involving 
diagnosis and prediction, in Medicine. Despite this body of research, it is still difficult to reach any 
conclusions about the potential role of MLPs for clinical decision-making. The studies are highly 
disjointed, they target specific clinical decision making problems, they generally have not built upon 
previous studies, there is little or no consideration of either Neural Network Theory or of Statistical Theory 
and many have methodological problems.  
 
The investigation is conducted in four parts: 
 
Part 1 is a review of clinical decision-making and an exposition of Neural Network Theory and Statistical 
Theory, which examines the characteristics of MLPs relevant to the types of clinical decision-making 
problems found in Psychiatry. We extend an earlier empirical review [Sargent 2001], which compared the 
performance of MLPs with Logistic Regression as classifiers of clinical datasets, and also consider the use 
of MLPs and Logistic Regression in the context of the theory of the Bias-Variance Trade Off. We find that 
there is qualified empirical and theoretical support for the application of MLP type neural networks to 
clinical decision making problems 
 
Part II is an exposition of methodological issues involved in comparing and evaluating classifiers in the 
context of clinical decision making. It concludes with a description of the methodology to be used for the 
investigation of the application of MLPs to individual clinical decision-making problems. 
 
Part III describes three studies in which MLPs are applied to specific psychiatric clinical decision-making 
problems and compared to the more commonly used Logistic Regression technique. The three clinical 
problems investigated are: 
 
a) Diagnosis of Melancholia amongst patients with Depression  
b) Prediction of response to treatment with stimulant medication in children with Attention Deficit 

Hyperactivity Disorder (ADHD) 
c) Diagnosis of Autistic Disorder 
 
Part IV, is a synthesis of the previous 3 parts. It is concluded, on theoretical and empirical grounds, that 
MLPs do have potential applications to some clinical decision-making problems in Psychiatry and that a 
proper evaluation of MLPs, especially in relation to comparison with other classification techniques, needs 
to take account the effects of the Bias-Variance Trade Off which results from increasing complexity. Some 
possible directions for future research are discussed and we outline plans for the continued development of 
an Autistic Disorder classifier based upon an MLP neural network developed in Chapter 7 
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GLOSSARY 
 
 
Az Area Under the ROC Curve. The volume of the area contained between 

the ROC Curve generated by a classifier and the bottom and right hand 
axes of the ROC graph. Az is an index of the classification accuracy of 
the classifier as a whole. 
 

Back Error 
Propagation 

An algorithm used to find the set of weights for an MLP, which are 
associated with an error minima. Also known as BackProp. 
 

Bayesian 
Classification 
Decision 
Boundary 
 

Bayes theorem stipulates that we should use knowledge (information) 
about probabilities to assign a case of unknown class membership to a 
class. If we know the probability of class membership at all points in an 
information space, then we can assign all cases at point in this space to 
the class with the highest probability at that point. If all the points in one 
region of the space have a higher probability for one class, and all the 
points in an adjacent region have a higher probability for another class, 
then there will be a boundary line between the two adjacent regions 
where the probability of membership of one class is equal to the 
probability of membership of the other class. This line is the Bayesian 
Classification Decision Boundary. The boundary can be a straight line 
an curved line or a ragged line with many twists and turns.  
   

Bootstrap 
corrected Az 
 

An Az value which is less optimistically biased than a training data set 
derived Az. 
 
The Bootstrap technique is used to generate a large number of 
samples. The classifier is then individually trained on each bootstrap 
sample. Az is measured on each bootstrap sample and the bootstrap 
derived classifier is also applied to the original full data set to obtain a 
second Az value. The difference between these two values is a 
measure of the optimistic bias of that particular bootstrap sample. The 
procedure is repeated for every bootstrap sample. The average 
difference between the two Az values across all the bootstrap samples 
is used as an estimator of the size of the optimistic bias. The classifier 
is then trained on the original full data set. The training data set Az 
value derived from this classifier is then corrected by subtracting the 
value of the estimated optimistic bias to produce a Bootstrap corrected 
value for Az. 
     

Classification 
Algorithm 
 

The set of equations or rules developed by a classifier to assign cases 
to classes based upon the values of a set of predictor variables. 
  

Classifier A method or technique for classifying cases into known classes. 
 
 

Complexity 
 

The degree of non-linearity of a function and also denotes the number 
of hidden units in an MLP required to approximate the function. Zero 
complexity is a linear function or zero hidden units. A complexity of two 
indicates one turning point in a curved line (i.e. a quadratic) or two 
hidden units. A complexity of three indicates two turning points in 
curved line (an equation with a cubed term) and three hidden units. And 
so on. 
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Connection 
 

The connection between the output of one unit and the input of another 
unit. Functionally equivalent to a synapse in a biological neural system. 
  

Cross-validation 
 

Measuring of the accuracy of classification on a second independent 
test data set.  

Early Stopping The practice of using a holdout data set to estimate the performance of 
multi-layer perceptron on the population during training and using 
deterioration in that performance as criteria to stop the training earlier 
than would otherwise be the case using other criteria for stopping. 
  

Error function 
 

A mathematical function which measures the difference between the 
actual and predicted values of a variable, usually the variable which 
signifies class membership. 
  

Error Surface The manifold surface of average (across all cases) error function values 
plotted as a function of all the possible values of all the weights in an 
MLP when applied to a set of cases. 
 

Generalisation  The classification accuracy of a classifier on a population. 
 

Global minima 
 

The point on the error surface of an MLP where error is at minimum 
value compared to anywhere else on the error surface. The set of 
weight values which define this point represent the best possible 
solution for the MLP on that data set using that error function.   
  

“gold standard” 
 

A classifier, which is judged to be the best possible (or best obtainable) 
in a particular clinical domain. It used as the standard against which 
other classifiers are evaluated. 
 

Hidden layer The middle layer(s) of a multi-layer perceptron. 
 

Ill-Posed Problem 
 

A classification problem where it not possible to classify cases, 
because there is no (or not much) separation of classes in the input 
space. 
 
The opposite of ill-posed is well-posed. 
 

Input Layer The first layer of a multi-layer perceptron which receives inputs (input 
patterns). 
 

Input Pattern The set of values of a set of predictor variables in a classification data 
set. 
 

Input space 
 

The space defined by all the possible values of all the input variables. 
 

Input Variable 
 

A variable which is member of the set of predictor variables. 

Linear 
 

A line, or function represented by a line, which is a straight line.   
 

Linear model 
 

An equation for a straight line, where the variables represent objects of 
interest such as the predictor variables and the classification criterion.   
 

Linear 
Discriminant 
Function Analysis 

A statistical modeling technique which can be used to develop a linear 
classifier. 
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Local minima A point on the error surface of an MLP where error is at minimum value 

compared to other points in its near vicinity on the error surface. The 
set of weight values which define this point represent a relatively good 
solution for the MLP on that data set using that error function.   
 

Logistic 
Regression  
 

A statistical modeling technique which can, amongst other things, be 
used to develop a linear classifier. Also known as a Logistic 
Discriminant when used as a classifier. 
 

Multi-layer 
Perceptron (MLP) 

A type of neural network consisting of 3 or more layers of units, in 
which information feeds forward from inputs in the first layer to outputs 
in the last layer. Also Known as an MLP. 
 

NevProp Software for implementing and training MLPs, developed by Dr P 
Goodman at the Centre for Biomedical Modeling Research at the 
University of Nevada, Reno Nevada, USA. 
 

Non-Linear 
 

A line, or function represented by a line, which is not a straight line. It 
has at least one, possibly more kinks or curved sections. 
 

Non-Linear model 
 

An equation for a curved or kinked line, where the variables represent 
objects of interest such as the predictor variables and the classification 
criterion.   
 
 

Optimistic bias  The bias present in measures of classification accuracy derived from a 
training data set, which come about as a result of capitalisation upon 
chance relationships (inherent in any sample) by training algorithms. 
The bias is always optimistic (that is towards indicating greater 
accuracy).  
 

Output layer The final or last layer of a MLP which generates an output(s). 
 

Output value The value of the output of a unit in the output layer of a MLP. 
  

Production After a classifier has been trained, it can be used to classify cases for 
which predictors are known but class membership is not. This phase is 
known as production. 
 

QuickProp An algorithm used to find the set of weights for a MLP which locate an 
error minima, but does so much quicker than BackProp.  
 

ROC Curve Receiver Operating Characteristics Curve. A particular graph, with 
origins in signal detection theory, which is drawn by plotting variations 
in Sensitivity (y axis) and 1 – Specificity (x-axis) across the full range of 
possible cut-off values of the output values of a classifier. 
   

Shrinkage 
 

The difference between a training data set derived measure of 
classification accuracy (e.g. Az) and a test data set derived measure of 
classification accuracy. It is a measure of the amount of optimistic bias 
contained in the training data set derived measure. 
 
If all the available data is used for training, then Az shrinkage can be 
estimated by subtracting Bootstrap corrected Az (see above) from 
training data set derived Az. 
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SYSTAT A software package for statistical analysis sold by the SPSS 
corporation. 
 

Test data set A data set of cases with predictor variables and known class 
membership, which is used to measure the performance of a classifier 
by applying the classifier to the data set and recording the accuracy of 
classification. Also known as a cross-validation data set. 
  

Training The process of applying an optimisation algorithm, such as BackProp, 
to an MLP to locate a set of weights for the MLP which minimises the 
error function 
 

Training  
algorithm 

An algorithm, for example BackProp, which used for training an MLP. 
  

 
Training data set 

 
A data set of cases with predictors and known class membership, 
which is used for the training of a classifier. 
  

Weight Also known as a “connection weight”. A positive or negative number 
used to multiply input connections to a unit in a multi-layer perceptron. 
The term Weight in an MLP corresponds directly to the term 
“coefficient” as used in regression and statistics.    
  

Weight Decay 
 

An addition to optimisation algorithms such as BackProp, which 
subtracts a constant small proportion from weights, on each pass of the 
algorithm and so biases the solution towards containing smaller rather 
than larger weights. This improves generalisation. 
  

Well-Posed 
Problem 
 

A classification problem where it is possible to classify all (or almost all) 
cases, because there is good separation of classes in the input space. 
 
The opposite of well-posed is ill-posed. 
 

Unit A single artificial neuron, which is part of a neural network. 
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GENERAL INTRODUCTION 
 TO THE INVESTIGATION 

 
Clinical Decision Making 

 

Clinical decision-making is the cornerstone of all clinical practice. Before an intervention 

is commenced, before a referral is made and even before further assessment is 

undertaken, the clinician must make a decision(s) about the nature of the clinical 

problems that are being presented. 

 

Improved clinical decision-making leads to improved clinical outcomes [Knottnerus et al, 

2002]. The most effective intervention is only effective when it is applied to an 

appropriate case. Many interventions have side effects or carry other risks. In the best-

case scenario, inappropriate intervention is a waste of clinical resources. In the worst 

case, inappropriate intervention causes unnecessary harm. Inappropriate referral and 

inappropriate further assessment are similarly problematic. 

 

Improvements in clinical decision-making practices offer the potential to improve clinical 

practices as a whole. Improvements to clinical decision-making practices have usually 

come about through clinical problem based research, in which the investigators have 

sought to gain a better understanding of the clinical entity(ies) at hand. Through this 

better understanding of specific clinical problems better clinical decision making 

practices have been suggested. These suggested practices are then empirically compared 
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to pre-existing practices and if they are found to be better, it is usually recommended that 

they be adopted in place of the previous practices. Through this mechanism of one-

clinical-problem-at-time investigation, clinical decision-making practices as a whole have 

gradually improved. 

     

An alternate approach is to attempt to improve clinical decision making, by focusing 

research efforts more directly on better understanding the clinical decision making 

process itself, rather than on understanding specific clinical problems. Such an approach 

has the potential to produce results that can be broadly applied to many clinical decision 

making problems. The investigations reported in this thesis take this approach. 

 

There are at least two basic components to clinical decision-making. These are: 

Information Gathering and Decision Making. For both these components there can be 

many alternatives. Combinations of the available alternatives for these two components 

produce many possibilities for clinical decision making for any particular clinical 

problem. The alternatives for information gathering tend to be closely tied to the clinical 

problem. The nature of the clinical problem, our conceptualisation and understanding of 

the clinical problem and the available technology, strongly dictate the range of 

information that can be gathered.  On the other hand the alternatives for decision-making 

are generally independent of the clinical problem. Instead they are related more to 

information theory and/or to statistical technologies. This distinction makes it more likely 

that general improvements to clinical decision making practices will be found by 
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researching alternatives for the decision making component rather than alternatives for 

information gathering component.  

 
 

Neural Networks 
 

Artificial neural networks, hereafter referred to as neural networks, are a recently 

developed, biologically inspired, form of computation modelled upon the functioning of 

neurons and nervous systems in biological organisms.  Traditional computing has 

developed since the 1940’s along the lines of centralised processing of information, 

known formally as the “Von Neuman Architecture” after its creator the mathematician 

John Von Neuman [Dayhoff 1990]. There has been a phenomenal pace of development in 

computing since World War II.  The main aspects of this have been faster and faster 

Central Processing Units (CPU), increases in the amounts of faster Random Access 

Memory (RAM), larger and faster Hard Disks, Local Area networking (LAN), Wide 

Area Networking (WAN), the Internet and more user friendly user interfaces.  The range 

of applications, such as complex calculation, word-processing and electronic 

communication, for which computers are now used is also phenomenal. In Western 

societies they have become an integral part of the workplace and are progressing towards 

becoming an integral part of all aspects of life in those societies. 

 

None the less, it is generally recognised that such computers, based upon the Von 

Newman Architecture, are only one of a large range of possible computing architectures. 

It is also generally recognised that they have little resemblance to neural systems in 
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biological organisms, such as the brain. These biological systems are composed of many 

simple information-processing units (neurons), which are linked together in networks and 

perform computation on information by parallel and distributed processing, rather than by 

centralised processing [Rummelhart & McClelland, 1986].  

 

Amongst other things, biological neural systems are capable of complex pattern 

recognition and classification tasks that traditional computers with centralised processing 

architecture, have found difficult to emulate. Examples of tasks, which humans, with 

their biological neural systems, are capable of, but which traditional computers are not as 

good at, are visual recognition of persons, objects and symbols, speech recognition and 

clinical diagnosis [Dayhoff, 1990].     

 

This has led to efforts amongst artificial intelligence researchers to develop artificial 

neural networks that use parallel and distributed information processing as an alternative 

to centralised information processing [Rummellhart & McClelland, 1986].  Amongst 

other things, it has been found that such neural networks can be used in pattern 

recognition tasks, such as visual recognition of persons, objects and symbols, speech 

recognition and clinical diagnosis [Dayhoff 1990; Cross, Harrison & Kennedy 1995; 

Price, Sptitznagel, Downey, Meyer, Risk & el-Ghazzaway 2000], and that they have 

much in common with statistical classification and pattern recognition techniques [Cheng 

& Titterington 1994, Ripley 1994, 1996, Sarle 1994, Bishop 1995, Reed & Marks 1999]. 

As well there are now a number of well established applications of neural network to 

clinical decision making in medicine (e.g. Diagnosis of Myocardial Infarction [Baxt 
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1990,1991]; detection of cervical cancer in Pap Smears [Kok & Boon, 1996, Kok et al 

2001, Cenci et al 2000, Halford et al 1999]; staging of prostate cancer [Babaian & Zhang 

2001, Jung et al 2002]; Prediction of survival after colon carcinoma treatment  [Snow, 

Keerr, Brandt & Rodvold 2001]). All this raises the question of their potential 

applicability to clinical decision-making problems in Psychiatry. 

 

  

Problem Statement 
 

In recent years Neural Networks have been successfully applied to a large number of 

classification and pattern recognition problems [Mjosness & DecCoste 2001]. There is 

also a growing body of published research investigating the potential application of 

Neural Networks to a wide range of clinical decision-making problems [Cross et al. 

1995]. A small number of these investigations have been in the area of psychiatry.  

 

Motivation for many of these investigation comes from the notion that Neural Networks 

may provide a better solution than a traditional statistical techniques (e.g. Linear 

Discriminant Function Analysis or Logistic Regression) commonly used in clinical 

decision making practices, because they can recognise patterns in data in much the same 

ways as an experienced clinician (who is presumably using his/her biological neural 

network). 

 

This notion is both true and misleading. Under certain conditions a Neural Network may 

provide a good solution to a particular clinical decision making problem and the 
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underlying basis of this good solution is pattern recognition. However a Neural Network 

can also be conceptualised as a solution based upon well understood principles of 

statistical approximation and estimation. It has much in common with Logistic 

Regression and other related statistical regression and classification techniques [Ripley 

1996]. Neural Networks can be seen as one of a range of techniques, which can be 

applied to Clinical Decision-Making problems. The real issue is not “Are they better?”, 

but “Under what conditions should they be considered and how can they be applied?”   

 

Despite a large number of studies which investigated the application of Neural Networks 

to individual Clinical Decision-Making problems, a clear picture about their applicability 

to Clinical Decision-Making problems has yet to emerge. There are several reasons for 

this.  

 

Firstly, the literature as a whole is not cohesive. Most investigations have tended to be 

“one offs” that have examined the application of a neural network to a specific clinical 

decision-making problem. They have not built upon previous work and as such they are 

not part of a thread which has progressively illuminated different aspects of a specific 

application1 or of the application of neural networks to clinical decision-making in 

general. 

 

                                                           
1 With a couple of notable exceptions, for example PAPNET - a neural network based system for 
diagnosing cervical cancer in PAP smears, which has been serially studied and developed. 
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Secondly, much of the literature on the application of Neural Networks to clinical 

decision-making has failed to consider Neural Networks from a statistical viewpoint 

[Ripley, 1996]. 

 

Finally, most investigations fail to consider a large body of knowledge and research that 

exists about clinical decision-making [Florio et al 1994].    

 

The objective of this thesis is to study the applicability of Neural Networks to Clinical 

Decision-Making problems in Psychiatry, in a systematic fashion and from both a 

Statistical and a Clinical Decision-Making viewpoint.  
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Research Questions 
 
The central question of this thesis is: 

Are MLP type Neural Networks applicable to clinical decision-making problems in 

Psychiatry? 

 

More specifically the thesis investigates the following:  

• Can MLP type Neural Networks be applied to clinical decision-making problems 

in Psychiatry? 

 

• Under what conditions can MLP type Neural Networks be applied to clinical 

decision-making problems in Psychiatry? 

 

• How should the application of MLP type Neural Networks to clinical decision-

making problems in Psychiatry be evaluated? 

 

• What are the implications of applying MLP type Neural Networks to clinical 

decision-making problems in Psychiatry for psychiatric taxonomy and for our 

theoretical understanding of psychiatric disorders?   
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 General Plan of the Thesis 
 
 
Part I.  

 
 
Examines the historical debate on clinical and statistical decision 
making, which has been the main focus of researchers to date. It 
introduces neural networks and reviews some of the literature on the 
application of neural networks to clinical decision making problems in 
medicine. It concludes by discussing the place of neural networks in 
clinical decision-making.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part II 

 
Describes neural networks and their implementation in detail. 
Concludes that MLP type neural networks can be used to solve non-
linear classification problems. 
 
Extends a review, of 29 studies, by Sargent [2001], which examines 
the comparative application of MLPs and Logistic Regression to large 
clinical datasets (N > 200), by adding 17 new studies published since 
his review. 
 
Uses the theoretical framework of the Bias-Variance Trade Off to 
compare MLPs and Logistic Regression, and elucidate important 
aspects of comparing and evaluating classifiers.     
 
 
Discusses methodological issues relevant to the evaluation of 
classifiers (including MLP type Neural Networks) for clinical decision-
making problems. Concludes by outlining, in detail, a framework for 
such evaluations  

  
 
Part III. 

 
Individually describes three sets of empirical studies of the application 
of MLP type neural networks to three clinical decision-making 
problems. These are: 
 

• Diagnosis of Melancholia amongst depressed patients 
 
• Prediction of response to stimulant medication in children with 

Attention Deficit Hyperactivity Disorder  
 

• Diagnosis of Autistic Disorder 
 
Part IV 

 
Provides a general conclusion on the overall findings of the 
investigation 

 


	B.A., M.A (Psych), M.Psych (Clinical)
	A Thesis submitted for
	
	University of New South Wales


	ABSTRACT
	Abstract
	Certificate of Originality
	Acknowledgements
	Statements of Originality and Collaboration
	Part I – Background
	Chapter 1
	Introduction
	Artificial Neural Networks

	1 4.1    LD and Neural Network Training
	4.2   Comparison of Linear and Non-Linear Classification
	
	4.5   Summary
	Treatment with Stimulant Medication in Children with Attention
	Disorder

	7.3      Study: Independent cross-validation of the Neural Network Classifier for Diagnosis of Autistic Disorder
	Probability
	7.6      A Study of the Stability of Neural Network Diagnosis of Autistic Disorder Over Time
	
	
	Autism Diagnostic Interview – Revised ADI-R



	A2.1   Historical Background
	A2.4   The Perceptron Error Surface
	A2.6    Equation for a Multi-Layer Perceptron
	A2.11   Other Optimization Algorithms
	
	
	
	
	LIST OF TABLES
	LIST OF FIGURES
	A Multi-Layer Perceptron Artificial Neural Network



	A2.13





	GLOSSARY
	
	Az

	Bayesian Classification Decision Boundary
	Bootstrap corrected Az
	Classification Algorithm
	Classifier
	Complexity
	Connection
	Cross-validation
	Early Stopping
	Unit


