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ABSTRACT

This thesis investigates the application of Multi-layer Perceptron (MLP) type Neural Networks to clinical
decision-making problems in Psychiatry. Only a small number of studies have previously investigated their
use in Psychiatry. More widely though, in the past decade there has been an increasing interest and several
hundred investigations of the application of MLPs to clinical decision-making problems, involving
diagnosis and prediction, in Medicine. Despite this body of research, it is still difficult to reach any
conclusions about the potential role of MLPs for clinical decision-making. The studies are highly
disjointed, they target specific clinical decision making problems, they generally have not built upon
previous studies, there is little or no consideration of either Neural Network Theory or of Statistical Theory
and many have methodological problems.

The investigation is conducted in four parts:

Part 1 is a review of clinical decision-making and an exposition of Neural Network Theory and Statistical
Theory, which examines the characteristics of MLPs relevant to the types of clinical decision-making
problems found in Psychiatry. We extend an earlier empirical review [Sargent 2001], which compared the
performance of MLPs with Logistic Regression as classifiers of clinical datasets, and also consider the use
of MLPs and Logistic Regression in the context of the theory of the Bias-Variance Trade Off. We find that
there is qualified empirical and theoretical support for the application of MLP type neural networks to
clinical decision making problems

Part II is an exposition of methodological issues involved in comparing and evaluating classifiers in the
context of clinical decision making. It concludes with a description of the methodology to be used for the
investigation of the application of MLPs to individual clinical decision-making problems.

Part III describes three studies in which MLPs are applied to specific psychiatric clinical decision-making
problems and compared to the more commonly used Logistic Regression technique. The three clinical
problems investigated are:

a) Diagnosis of Melancholia amongst patients with Depression

b) Prediction of response to treatment with stimulant medication in children with Attention Deficit
Hyperactivity Disorder (ADHD)

c) Diagnosis of Autistic Disorder

Part IV, is a synthesis of the previous 3 parts. It is concluded, on theoretical and empirical grounds, that
MLPs do have potential applications to some clinical decision-making problems in Psychiatry and that a
proper evaluation of MLPs, especially in relation to comparison with other classification techniques, needs
to take account the effects of the Bias-Variance Trade Off which results from increasing complexity. Some
possible directions for future research are discussed and we outline plans for the continued development of
an Autistic Disorder classifier based upon an MLP neural network developed in Chapter 7
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Area Under the ROC Curve. The volume of the area contained between
the ROC Curve generated by a classifier and the bottom and right hand
axes of the ROC graph. Az is an index of the classification accuracy of
the classifier as a whole.

An algorithm used to find the set of weights for an MLP, which are
associated with an error minima. Also known as BackProp.

Bayes theorem stipulates that we should use knowledge (information)
about probabilities to assign a case of unknown class membership to a
class. If we know the probability of class membership at all points in an
information space, then we can assign all cases at point in this space to
the class with the highest probability at that point. If all the points in one
region of the space have a higher probability for one class, and all the
points in an adjacent region have a higher probability for another class,
then there will be a boundary line between the two adjacent regions
where the probability of membership of one class is equal to the
probability of membership of the other class. This line is the Bayesian
Classification Decision Boundary. The boundary can be a straight line
an curved line or a ragged line with many twists and turns.

An Az value which is less optimistically biased than a training data set
derived Az.

The Bootstrap technique is used to generate a large number of
samples. The classifier is then individually trained on each bootstrap
sample. Az is measured on each bootstrap sample and the bootstrap
derived classifier is also applied to the original full data set to obtain a
second Az value. The difference between these two values is a
measure of the optimistic bias of that particular bootstrap sample. The
procedure is repeated for every bootstrap sample. The average
difference between the two Az values across all the bootstrap samples
is used as an estimator of the size of the optimistic bias. The classifier
is then trained on the original full data set. The training data set Az
value derived from this classifier is then corrected by subtracting the
value of the estimated optimistic bias to produce a Bootstrap corrected
value for Az.

The set of equations or rules developed by a classifier to assign cases
to classes based upon the values of a set of predictor variables.

A method or technique for classifying cases into known classes.

The degree of non-linearity of a function and also denotes the number
of hidden units in an MLP required to approximate the function. Zero
complexity is a linear function or zero hidden units. A complexity of two
indicates one turning point in a curved line (i.e. a quadratic) or two
hidden units. A complexity of three indicates two turning points in
curved line (an equation with a cubed term) and three hidden units. And
SO on.
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The connection between the output of one unit and the input of another
unit. Functionally equivalent to a synapse in a biological neural system.

Measuring of the accuracy of classification on a second independent
test data set.

The practice of using a holdout data set to estimate the performance of
multi-layer perceptron on the population during training and using
deterioration in that performance as criteria to stop the training earlier
than would otherwise be the case using other criteria for stopping.

A mathematical function which measures the difference between the
actual and predicted values of a variable, usually the variable which
signifies class membership.

The manifold surface of average (across all cases) error function values
plotted as a function of all the possible values of all the weights in an
MLP when applied to a set of cases.

The classification accuracy of a classifier on a population.

The point on the error surface of an MLP where error is at minimum
value compared to anywhere else on the error surface. The set of
weight values which define this point represent the best possible
solution for the MLP on that data set using that error function.

A classifier, which is judged to be the best possible (or best obtainable)
in a particular clinical domain. It used as the standard against which
other classifiers are evaluated.

The middle layer(s) of a multi-layer perceptron.

A classification problem where it not possible to classify cases,
because there is no (or not much) separation of classes in the input
space.

The opposite of ill-posed is well-posed.

The first layer of a multi-layer perceptron which receives inputs (input
patterns).

The set of values of a set of predictor variables in a classification data
set.

The space defined by all the possible values of all the input variables.
A variable which is member of the set of predictor variables.
A line, or function represented by a line, which is a straight line.

An equation for a straight line, where the variables represent objects of
interest such as the predictor variables and the classification criterion.

A statistical modeling technique which can be used to develop a linear
classifier.
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A point on the error surface of an MLP where error is at minimum value
compared to other points in its near vicinity on the error surface. The
set of weight values which define this point represent a relatively good
solution for the MLP on that data set using that error function.

A statistical modeling technique which can, amongst other things, be
used to develop a linear classifier. Also known as a Logistic
Discriminant when used as a classifier.

A type of neural network consisting of 3 or more layers of units, in
which information feeds forward from inputs in the first layer to outputs
in the last layer. Also Known as an MLP.

Software for implementing and training MLPs, developed by Dr P
Goodman at the Centre for Biomedical Modeling Research at the
University of Nevada, Reno Nevada, USA.

A line, or function represented by a line, which is not a straight line. It
has at least one, possibly more kinks or curved sections.

An equation for a curved or kinked line, where the variables represent
objects of interest such as the predictor variables and the classification
criterion.

The bias present in measures of classification accuracy derived from a
training data set, which come about as a result of capitalisation upon
chance relationships (inherent in any sample) by training algorithms.
The bias is always optimistic (that is towards indicating greater
accuracy).

The final or last layer of a MLP which generates an output(s).
The value of the output of a unit in the output layer of a MLP.

After a classifier has been trained, it can be used to classify cases for
which predictors are known but class membership is not. This phase is
known as production.

An algorithm used to find the set of weights for a MLP which locate an
error minima, but does so much quicker than BackProp.

Receiver Operating Characteristics Curve. A particular graph, with
origins in signal detection theory, which is drawn by plotting variations
in Sensitivity (y axis) and 1 — Specificity (x-axis) across the full range of
possible cut-off values of the output values of a classifier.

The difference between a training data set derived measure of
classification accuracy (e.g. Az) and a test data set derived measure of
classification accuracy. It is a measure of the amount of optimistic bias
contained in the training data set derived measure.

If all the available data is used for training, then Az shrinkage can be
estimated by subtracting Bootstrap corrected Az (see above) from
training data set derived Az.
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A software package for statistical analysis sold by the SPSS
corporation.

A data set of cases with predictor variables and known class
membership, which is used to measure the performance of a classifier
by applying the classifier to the data set and recording the accuracy of
classification. Also known as a cross-validation data set.

The process of applying an optimisation algorithm, such as BackProp,
to an MLP to locate a set of weights for the MLP which minimises the
error function

An algorithm, for example BackProp, which used for training an MLP.

A data set of cases with predictors and known class membership,
which is used for the training of a classifier.

Also known as a “connection weight”. A positive or negative number
used to multiply input connections to a unit in a multi-layer perceptron.
The term Weight in an MLP corresponds directly to the term
“coefficient” as used in regression and statistics.

An addition to optimisation algorithms such as BackProp, which
subtracts a constant small proportion from weights, on each pass of the
algorithm and so biases the solution towards containing smaller rather
than larger weights. This improves generalisation.

A classification problem where it is possible to classify all (or almost all)
cases, because there is good separation of classes in the input space.

The opposite of well-posed is ill-posed.

A single artificial neuron, which is part of a neural network.
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GENERAL INTRODUCTION
To THE INVESTIGATION

Clinical Decision Making

Clinical decision-making is the cornerstone of all clinical practice. Before an intervention
is commenced, before a referral is made and even before further assessment is
undertaken, the clinician must make a decision(s) about the nature of the clinical

problems that are being presented.

Improved clinical decision-making leads to improved clinical outcomes [Knottnerus et al,
2002]. The most effective intervention is only effective when it is applied to an
appropriate case. Many interventions have side effects or carry other risks. In the best-
case scenario, inappropriate intervention is a waste of clinical resources. In the worst
case, inappropriate intervention causes unnecessary harm. Inappropriate referral and

inappropriate further assessment are similarly problematic.

Improvements in clinical decision-making practices offer the potential to improve clinical
practices as a whole. Improvements to clinical decision-making practices have usually
come about through clinical problem based research, in which the investigators have
sought to gain a better understanding of the clinical entity(ies) at hand. Through this
better understanding of specific clinical problems better clinical decision making

practices have been suggested. These suggested practices are then empirically compared
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to pre-existing practices and if they are found to be better, it is usually recommended that
they be adopted in place of the previous practices. Through this mechanism of one-
clinical-problem-at-time investigation, clinical decision-making practices as a whole have

gradually improved.

An alternate approach is to attempt to improve clinical decision making, by focusing
research efforts more directly on better understanding the clinical decision making
process itself, rather than on understanding specific clinical problems. Such an approach
has the potential to produce results that can be broadly applied to many clinical decision

making problems. The investigations reported in this thesis take this approach.

There are at least two basic components to clinical decision-making. These are:
Information Gathering and Decision Making. For both these components there can be
many alternatives. Combinations of the available alternatives for these two components
produce many possibilities for clinical decision making for any particular clinical
problem. The alternatives for information gathering tend to be closely tied to the clinical
problem. The nature of the clinical problem, our conceptualisation and understanding of
the clinical problem and the available technology, strongly dictate the range of
information that can be gathered. On the other hand the alternatives for decision-making
are generally independent of the clinical problem. Instead they are related more to
information theory and/or to statistical technologies. This distinction makes it more likely

that general improvements to clinical decision making practices will be found by
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researching alternatives for the decision making component rather than alternatives for

information gathering component.

Neural Networks

Artificial neural networks, hereafter referred to as neural networks, are a recently
developed, biologically inspired, form of computation modelled upon the functioning of
neurons and nervous systems in biological organisms. Traditional computing has
developed since the 1940’s along the lines of centralised processing of information,
known formally as the “Von Neuman Architecture” after its creator the mathematician
John Von Neuman [Dayhoff 1990]. There has been a phenomenal pace of development in
computing since World War II. The main aspects of this have been faster and faster
Central Processing Units (CPU), increases in the amounts of faster Random Access
Memory (RAM), larger and faster Hard Disks, Local Area networking (LAN), Wide
Area Networking (WAN), the Internet and more user friendly user interfaces. The range
of applications, such as complex calculation, word-processing and electronic
communication, for which computers are now used is also phenomenal. In Western
societies they have become an integral part of the workplace and are progressing towards

becoming an integral part of all aspects of life in those societies.

None the less, it is generally recognised that such computers, based upon the Von
Newman Architecture, are only one of a large range of possible computing architectures.

It is also generally recognised that they have little resemblance to neural systems in
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biological organisms, such as the brain. These biological systems are composed of many
simple information-processing units (neurons), which are linked together in networks and
perform computation on information by parallel and distributed processing, rather than by

centralised processing [Rummelhart & McClelland, 1986].

Amongst other things, biological neural systems are capable of complex pattern
recognition and classification tasks that traditional computers with centralised processing
architecture, have found difficult to emulate. Examples of tasks, which humans, with
their biological neural systems, are capable of, but which traditional computers are not as
good at, are visual recognition of persons, objects and symbols, speech recognition and

clinical diagnosis [Dayhoff, 1990].

This has led to efforts amongst artificial intelligence researchers to develop artificial
neural networks that use parallel and distributed information processing as an alternative
to centralised information processing [Rummellhart & McClelland, 1986]. Amongst
other things, it has been found that such neural networks can be used in pattern
recognition tasks, such as visual recognition of persons, objects and symbols, speech
recognition and clinical diagnosis [Dayhoff 1990; Cross, Harrison & Kennedy 1995;
Price, Sptitznagel, Downey, Meyer, Risk & el-Ghazzaway 2000], and that they have
much in common with statistical classification and pattern recognition techniques [Cheng
& Titterington 1994, Ripley 1994, 1996, Sarle 1994, Bishop 1995, Reed & Marks 1999].
As well there are now a number of well established applications of neural network to

clinical decision making in medicine (e.g. Diagnosis of Myocardial Infarction [Baxt
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1990,1991]; detection of cervical cancer in Pap Smears [Kok & Boon, 1996, Kok et al
2001, Cenci et al 2000, Halford et al 1999]; staging of prostate cancer [Babaian & Zhang
2001, Jung et al 2002]; Prediction of survival after colon carcinoma treatment [Snow,
Keerr, Brandt & Rodvold 2001]). All this raises the question of their potential

applicability to clinical decision-making problems in Psychiatry.

Problem Statement

In recent years Neural Networks have been successfully applied to a large number of
classification and pattern recognition problems [Mjosness & DecCoste 2001]. There is
also a growing body of published research investigating the potential application of
Neural Networks to a wide range of clinical decision-making problems [Cross et al.

1995]. A small number of these investigations have been in the area of psychiatry.

Motivation for many of these investigation comes from the notion that Neural Networks
may provide a better solution than a traditional statistical techniques (e.g. Linear
Discriminant Function Analysis or Logistic Regression) commonly used in clinical
decision making practices, because they can recognise patterns in data in much the same
ways as an experienced clinician (who is presumably using his/her biological neural

network).

This notion is both true and misleading. Under certain conditions a Neural Network may

provide a good solution to a particular clinical decision making problem and the
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underlying basis of this good solution is pattern recognition. However a Neural Network
can also be conceptualised as a solution based upon well understood principles of
statistical approximation and estimation. It has much in common with Logistic
Regression and other related statistical regression and classification techniques [Ripley

1996]. Neural Networks can be seen as one of a range of techniques, which can be

applied to Clinical Decision-Making problems. The real issue is not “Are they better?”,

but “Under what conditions should they be considered and how can they be applied?”

Despite a large number of studies which investigated the application of Neural Networks
to individual Clinical Decision-Making problems, a clear picture about their applicability
to Clinical Decision-Making problems has yet to emerge. There are several reasons for

this.

Firstly, the literature as a whole is not cohesive. Most investigations have tended to be
“one offs” that have examined the application of a neural network to a specific clinical
decision-making problem. They have not built upon previous work and as such they are
not part of a thread which has progressively illuminated different aspects of a specific
application' or of the application of neural networks to clinical decision-making in

general.

! With a couple of notable exceptions, for example PAPNET - a neural network based system for
diagnosing cervical cancer in PAP smears, which has been serially studied and developed.
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Secondly, much of the literature on the application of Neural Networks to clinical
decision-making has failed to consider Neural Networks from a statistical viewpoint

[Ripley, 1996].

Finally, most investigations fail to consider a large body of knowledge and research that

exists about clinical decision-making [Florio et al 1994].

The objective of this thesis is to study the applicability of Neural Networks to Clinical
Decision-Making problems in Psychiatry, in a systematic fashion and from both a

Statistical and a Clinical Decision-Making viewpoint.
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Research Questions

The central question of this thesis is:
Are MLP type Neural Networks applicable to clinical decision-making problems in

Psychiatry?

More specifically the thesis investigates the following:
e Can MLP type Neural Networks be applied to clinical decision-making problems

in Psychiatry?

o Under what conditions can MLP type Neural Networks be applied to clinical

decision-making problems in Psychiatry?

e How should the application of MLP type Neural Networks to clinical decision-

making problems in Psychiatry be evaluated?

o What are the implications of applying MLP type Neural Networks to clinical
decision-making problems in Psychiatry for psychiatric taxonomy and for our

theoretical understanding of psychiatric disorders?
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General Plan of the Thesis

Part I.

Part Il

Part I11.

Part 1V

Examines the historical debate on clinical and statistical decision
making, which has been the main focus of researchers to date. It
introduces neural networks and reviews some of the literature on the
application of neural networks to clinical decision making problems in
medicine. It concludes by discussing the place of neural networks in
clinical decision-making.

Describes neural networks and their implementation in detail.
Concludes that MLP type neural networks can be used to solve non-
linear classification problems.

Extends a review, of 29 studies, by Sargent [2001], which examines
the comparative application of MLPs and Logistic Regression to large
clinical datasets (N > 200), by adding 17 new studies published since
his review.

Uses the theoretical framework of the Bias-Variance Trade Off to
compare MLPs and Logistic Regression, and elucidate important
aspects of comparing and evaluating classifiers.

Discusses methodological issues relevant to the evaluation of
classifiers (including MLP type Neural Networks) for clinical decision-
making problems. Concludes by outlining, in detail, a framework for
such evaluations

Individually describes three sets of empirical studies of the application
of MLP type neural networks to three clinical decision-making
problems. These are:

e Diagnosis of Melancholia amongst depressed patients

e Prediction of response to stimulant medication in children with
Attention Deficit Hyperactivity Disorder

e Diagnosis of Autistic Disorder

Provides a general conclusion on the overall findings of the
investigation
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