
  

Chapter 2 

ARTIFICIAL NEURAL NETWORKS 
 

 

Artificial Neural Networks (more commonly, and hereafter, referred to as neural 

networks) are a recently developed and fundamentally new approach to computing and 

artificial intelligence, which is inspired by the functioning of neurons in the brain. The 

neural network approach to artificial intelligence differs radically from the “Expert 

System” approach outlined at the end of the last chapter. The expert system approach is 

based upon the elucidation (from a clinician or other expert) and application of an 

appropriate set of rules to the solution of a problem, such as clinical diagnosis.  Neural 

networks on the other hand are based on the observation that animals with a nervous 

system (i.e. a network of interconnected neurons) can make behavioural adaptations to 

their local environment by learning responses to stimuli. 

 

Some responses to stimuli, such as knee jerk reflex in humans (where the leg moves 

forward in response to a small hammer tap at the base of the knee) are clearly hardwired 

into the Central Nervous System (CNS) prior to birth. The knee jerk reflex occurs when a 

tap stimulates receptor neurons located in a leg muscle, above the knee. These receptor 

neurons synapse onto sensory neurons, which connect from the leg to the spinal cord. In 

the spinal cord these sensory neurons synapse onto motor neurons, which inturn synapse 

onto muscle cells in the leg, below the knee. An appropriate level of stimulation of 

receptors at one end of this neural circuit leads directly to contraction of muscles at the 

other end. As a result of these neural connections a knee jerk response exists.       
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However many animals with a CNS demonstrate responses to stimuli which cannot be 

explained as a result of a set of “hardwired at birth” neural connections such as those 

which underlie the knee jerk reflex response. They demonstrate specific responses to 

specific stimuli, which could only have been learned in the context of their environment 

and experiences. That is they can develop new responses to stimuli, as demonstrated in 

the famous classical conditioning experiment of Pavlov, in which a dog learned to salivate 

in response to a bell. The existence of learning of this kind implies that connectivity 

within the nervous systems of such animals is to some extent plastic, in the sense that new 

sets of connections, which create new stimulus-response circuits, can somehow be 

created. The neural network approach to artificial intelligence is based upon the attempt to 

harness the learning properties of networks of interconnected neurons, to develop 

solutions to practical problems such as medical diagnosis, amongst other things.   

 

An artificial neural network is a network made up of simulated "artificial neurons" 

formally referred to as units, that are multiply interconnected with one another (see figure 

2.1). Each unit exhibits behaviour similar to the behaviour of a biological neuron. That is, 

a unit can have both excitatory and inhibitory inputs. Units sum their inputs and if this 

sum exceeds a given threshold, the unit fires an output. If the sum of the inputs fails to 

exceed the threshold value then the unit does not fire. This phenomenon in biological 

neurons has been termed the "all or none principle". Many connection configurations 

(topologies) of these artificial neurons into networks are possible. One configuration, the 

Multi-Layer Perceptron, which is described below is the one most commonly applied to 

Clinical Decision Making problems [Cross, Harrison & Kennedy, 1995; Price et al, 2000].  
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2.1  The Multi-Layer Perceptron 
 

A Multi-Layer Perceptron (MLP) is a Neural Network configured by connecting layers of 

units, such that the outputs of units in one layer fully interconnect with the inputs of units 

in the next layer. The most common number of layers in a MLP is three (see Figure 2.1). 

The first layer, which is called the Input Layer, fires its units according to a set of inputs 

external to the network, which is called the Input Pattern. In the second layer, called the 

Hidden Layer, each hidden layer unit receives an input connection from each input layer 

unit. The last layer, is called the Output Layer, each output layer unit receives an input 

connection from each hidden layer unit. In neural networks that have more than 3 layers, 

the additional layers are nominated as hidden layers. 

 

Figure 2.1  A Multi-Layer Perceptron Artificial Neural Network 

 

For units in hidden and output layers, each input connection (the value of which is always 

either 1 or 0, since these are the only possible values of the output of another unit which 

has either fired [1] or not fired [0]) is multiplied by a specific connection weight to give a 
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weighted input. If the sum of these weighted inputs exceeds a threshold (called the firing 

threshold) then that unit fires (generates an output). If the weighted sum does not exceed 

the threshold then that unit does not fire (does not generate an output). Thus the firing 

pattern of the MLP as a whole depends only on two things: the input pattern and; the set 

of weights (across the entire MLP) used by units to weight their input connections. 

 

In the Central Nervous Systems of animals, networks of biological neurons encode 

learning by modifications to their firing patterns in response to stimuli. These changes in 

firing patterns that mediate learning are in turn mediated by changes in the connection 

strength of biological synapses, the points at which information is transmitted from one 

neuron to another. This form of learning has been termed Hebbian Learning, after the 

person who first proposed it, Donald O. Hebb in his 1949 book The Organisation of 

Behavior: A Neuropsychological Theory [Hebb 1949].  In an artificial neural network, 

such as an MLP, each unit assigns a mathematical weight to each of its inputs. This 

mathematical weight is the equivalent of the connection strength of a synapse. Just as 

learning in brains is a function of alterations in the connection strength of synapses, 

learning in artificial neural networks is a function of alterations in the mathematical 

weights each unit gives to each of its inputs. Similarly these alterations in input 

connection weights can lead to changes in the firing patterns exhibited by the units and by 

the network as a whole.  A full technical exposition of learning by MLPs is contained in 

Appendix 2. A briefer less technical discussion takes place in the next section.  

 

 

 

 16



 Chapter 2    Artificial Neural Networks   

2.2  Back-Error Propagation 

For an artificial neural network, such as an MLP, to have the ability to encode learning, it 

requires some mechanism whereby the connection weights (hereafter referred to as only 

as weights) assigned by a unit to each of its inputs can be appropriately modified in 

response to some external stimulus. The Back-Error Propagation algorithm (Werbos, 

1974) is the most commonly used process by which the weights are altered so as to 

encode learning [Dayhoff 1990, Bishop 1995, Reed & Marks, 1999].  

 

During the training phase (i.e. the successive trials during which learning occurs) a neural 

network is presented with a large set of input patterns (the training set), one at a time. 

Each time it is presented an input pattern the neural network generates an output pattern 

according to how the input pattern causes units to fire in the hidden layer and how these in 

turn cause units to fire in the output layer. The neural network is then also presented with 

the correct answer  (i.e. what its output pattern should have been). If the network's output 

pattern and the correct output pattern do not match then Back-Error Propagation begins. 

Commencing with the final output layer and then proceeding backwards through the 

network layer by layer, the weights of each unit are adjusted by a small amount (called the 

delta value), so that next time the same input pattern is presented it will be more likely to 

produce the correct output pattern. The cases in the training set are presented many times 

(often thousands of times) with all the possible combinations of inputs and correct outputs 

being presented many times. The training phase continues until the neural network 

achieves a predetermined rate of accuracy called criterion (e.g. 99% correct responses) 

with the training set. Once criterion has been achieved, the training phase is terminated 

and the neural network is switched into production mode. That is, the weights are no 
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longer adjusted, they are frozen at the values that produced the criterion accuracy, and the 

network can be put to use in the real world classifying cases where the answer is 

unknown. Such Back-Error Propagation Multi-layer Perceptron neural networks have 

been applied to a wide variety of pattern recognition problems, such as handwriting 

recognition, speech recognition, text to speech translation, image analysis, and medical 

diagnosis  [Dayhoff, 1990].  

 

 

2.3  Pattern Recognition by Multi-Layer Perceptron Neural Networks 
 
Traditional computer applications such as word processors, spreadsheets, accounting 

packages or hospital patient databases are based upon the ability of the traditional 

computer system to manipulate and store data. Essentially, all traditional computing 

applications involve only the manipulation and storage of data. The advent of neural 

networks makes possible a new kind of application, those that involve pattern mapping. 

What a Multi-Layer Perceptron neural network does is take one pattern (an input pattern) 

and from that produce another pattern (the output pattern).  After successful training it 

does this reliably, and is able to discriminate between many different input patterns, 

producing the correct output pattern for each one.  

 

From a practical standpoint, a Multi-layer Perceptron can be conceptualised as a pattern 

mapping black box. The exact details of what goes on inside the box do not matter, as 

much as the fact that a particular input pattern will always elicit a particular output 

pattern. The sorts of problems, which could be considered as applications that neural 

networks can help to solve, are those that can be conceptualised as a pattern recognition or 
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pattern-mapping problem. The “black box” conceptualisation of neural networks has 

caused much consternation1 amongst those more used to statistical and/or other 

classification techniques, which take an explicit modelling approach. However as we shall 

see later in this thesis, a black box approach may produce reasonably good results in some 

problems, but a more general framework, which looks inside the black box and reconciles 

MLPs with statistical and other approaches is required for their intelligent application 

[Cheng & Titterington 1994, Ripley 1994, Sarle 1994, Bishop 1995, Reed & Marks 1999, 

Hastie et al 2001].  

  

Dayhoff [1990] lists some of the areas in which MLPs have and can be applied. On this 

list she includes such things as weather forecasting, financial analysis (e.g. which loan 

applicants should be approved), image analysis (i.e. computer vision, a machine being 

able to identify objects and actions in context, for example spotting tanks in satellite 

images or recognising human emotions by facial expression in video images), fault 

diagnosis in machines and industrial processes, automated control, intelligent robots that 

can be taught physical tasks (e.g. welding a car body, moving in an unfamiliar terrain or 

space), speech recognition (i.e. deciphering meaning from the spoken word), text 

recognition (i.e. deciphering meaning from written text), handwriting recognition (e.g. 

handwritten postcode recognition on mail), artificial speech (text to phoneme translation), 

and medical diagnosis.  

 

 

 

                                                           
1 For Example: a number of letters criticising the “black box” nature of neural networks appeared in the 
journal Lancet as letters in issues following the publication of a paper by Cross et al [1995], which 
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Neural Networks in Diagnostic Medicine 

One of the first diagnostic neural network applications developed in medicine is that 

described by Baxt [1990].  This study examined the performance of a neural network for 

the differential diagnosis of patients with acute myocardial infarction from those without, 

amongst patients presenting to an emergency department with chest pain. The neural 

network was a four-layer back-error propagation MLP. The input layer had 20 units, then 

two hidden layers of 10 units each and 1 unit in the final output layer.    

 

The 20 variable input data set is described, in Table 2.1 below. 

 

History Past History Examination Electrocardiogram 
Age Past Acute MI Jugular venous distension 2 mm ST elevation 
Sex Angina Rales 1 mm ST elevation 
Location of Pain Diabetes  ST depression 
Response to 
nitroglycerine 

Hypertension  T wave inversion 

Nausea & vomiting    
Diaphoresis    
Syncope    
Shortness of 
Breath 

   

Palpitations    

 
Table 2.1:  Input variables used by Baxt [1990] to diagnose acute myocardial 

infarction  
 
 
The data used to train and test the network consisted of 356 patients, of whom 236 did not 

have acute myocardial infarction and 120 did have infarction. Half this dataset was 

randomly chosen as the training set (N = 178, 118 without acute myocardial infarction, 60 

with). After training, the other half of the dataset was used for cross validation. In the 

                                                                                                                                                                              
advocated the use neural networks for clinical decision making in medicine 
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cases that the network had not previously seen, the network performed with a sensitivity 

of 92% and a specificity of 96%. 

 

This study is a good example of how neural networks can be applied to a clinical decision 

making problem. In 1990, when the study was published, it was one of only several that 

had been published up to that date.  Now, in 2002, there is a published literature of 

hundreds of studies of neural networks applied to clinical decision-making in medicine. 

For the purposes of exposition, some of the studies published in the medical literature, 

during the past decade, are presented in Table 2.2 below. 

 

Area Study 
 
Diagnosis of 
Myocardial 
Infarction 

Baxt [1996] In a replication of his earlier study Baxt [1990], a 
neural network was trained on 351 patients hospitalised for 
suspected myocardial infarction. It was then prospectively tested 
on 331 consecutive patients presenting to an emergency 
department with anterior chest pain. The network was directly 
compared to the diagnoses of emergency department physicians.  
The network achieved a sensitivity of 97% and a specificity of 
96%. Physicians achieved a sensitivity of 78% and a specificity of 
85%.  
 

  
Furlong et al [1991] trained a neural network to predict acute 
myocardial infarction using data on cardiac enzymes as inputs. 
Compared to a pathologist's interpretation of the same data, the 
network correctly classified 100% of cases (n=24) and 93% of 
non-cases (n=29). Compared to cardiologists' diagnoses made 
from echocardiograms, the network correctly classified 86% of 
cases (n=14) and 33% (n=3) of non-cases. Compared with 
diagnosis made on autopsy the network correctly classified 92% 
of cases (n=26) and 67% of non-cases (n=6).  
 
 

 Baxt et al. [2002] studied 2076 who had MI ruled out and 128 who 
had sustained MI, who were consecutive patients presenting to an 
emergency department with anterior chest pain over an 18 month 
period. Using the neural network previously developed by Baxt 
[1990], 121 of the 128 were correctly identified (95% sensitivity) 
with a specificity of 96%.  
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Diagnosis of Breast 
Cancer  

 
Astion & Wilding [1992] trained a network to differentially diagnose 
patients with malignant breast cancer from those with benign 
conditions on the basis of patient's age and nine biochemical 
variables. The network attained 80% accuracy during training on a 
set of 57 patients, 23 with malignant cancer and 34 with benign 
breast conditions. On a cross-validation with another 20 patients it 
correctly classified 84%. A Discriminant function derived from the 
original 57 cases correctly diagnosed only 75% of patients.  

  
 
Diagnosis of 
Alzheimer’s Disease 

 
Kippenhan et al  [1992] trained a network to diagnose Alzheimer's 
disease from PET scans. The network achieved an area under the 
ROC curve of 0.85 compared to that of a clinical expert 0.89. The 
neural network also greatly outperformed the statistical method of 
Discriminant Analysis.  
 
 

Prediction of 
allograft rejection in 
Liver 
Transplantation 

Hughes et al [2001] studied rejection of a transplanted liver in the 
period 3 months post-transplant in 124 consecutive transplants. 
The predictor set consisted of pre-transplant clinical and 
biochemical data. The neural network obtained an Area under the 
ROC Curve of .902 and had a sensitivity of 80% and a specificity 
of 90%. The neural network outperformed clinical judgement 
based upon the same set of input variables.  
 

Diagnosis of 
microcalcifications 
in mammograms 

Markopoulos et al. [2001] studied 108 malignant and 132 benign 
cases. A neural network was trained on several physical 
parameters of the microcalcifications to classify mammograms 
into malignant and benign categories. The neural network 
achieved an Area under the ROC Curve of .937 compared to .810 
for physicians. This difference was statistically significant.  
 
 

Prediction of Stage 
in Prostate Cancer  

Han et al [2001] studied 5744 men treated for cancer of the 
Prostrate. Trained a neural network to predict organ confinement 
and lymph node involvement status using clinical and biochemical 
parameters as inputs. The neural network performed better than 
the widely used standard practice of using a nomogram based 
upon a logistic regression.  . 

 

Table 2.2:  Some Neural Network Applications in Medicine 

 

The studies cited in Table 2.2 indicate that neural networks are being widely considered 

as aids for clinical decision-making and diagnostics. 

 

 

 

 22



 Chapter 2    Artificial Neural Networks   

Empirical Evidence on Neural Networks verses Logistic Regression for 
Clinical Decision Making  
 
There is now a large and growing number of studies in the medical literature, which use 

clinical datasets, and which have compared the performance, as classifiers, of a neural 

network(s) with a logistic regression. In some studies, the neural network has been found 

to classify better than the logistic regression, in some other studies the two are found to be 

equivalent, and in a small number of studies the logistic regression classifies better than 

the neural network.  

In an ideal world, every study ever conducted would be published in a database of results, 

so that the true distribution of results across all studies of a particular hypothesis was 

easily observed. In such a situation, when multiple studies investigate the same general 

hypothesis, we would tend to conclude that the hypothesis is true if the number of studies 

finding in favour of the hypothesis, far exceeds the number expected from the application 

of the type I error rates. On the other hand, we would tend to conclude the hypothesis is 

false if only a small number of studies, as predicted by the effects of type I errors, find in 

favour of the hypothesis. 

However, in the real world, there are filters which prevent the publication of some studies 

and boost the publication of others. Firstly, journals, their editors and reviewers, are more 

likely to reject papers with negative findings because, they don’t highlight something new 

and the readership is less likely to be interested in reading about negative findings. 

Secondly investigators, pre-empting the bias of journal editorial decisions, might decide 

to conserve their effort and not write up and submit studies which have a negative finding. 

Both these biases also work in reverse. That is investigators are more likely (in fact almost 
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certain) to write up and submit studies with a positive findings and journals are more 

likely to publish these studies.  

Studies with a positive finding, in favour of a hypothesis, can arise in two ways. Firstly 

they can occur, in very large proportion, when that hypothesis is true. Secondly they can 

occur by chance and in very small proportion, when that hypothesis is not true (type I 

error). As such it is possible that when there is strong publication bias, most of the 

spuriously significant studies are published, and most of the studies involving the same 

hypothesis, but which have a null finding, are not published. This would give an 

appearance in the literature that the hypothesis is true, at least sometimes, when fact it is 

not ever. 

Sargent [2001] examines this issue in respect of the hypothesis that Neural Networks can 

in some circumstances classify better than a logistic regression, by analysing a set of 29 

selected studies from the medical literature. The inclusion criteria were that: the study 

compared a neural network with a Logistic Regression or Cox Regression in a clinical 

application, the sample size was greater than 200, and the comparison was made on the 

basis of validation dataset error or an equivalent.  He found that the neural network 

outperformed the regression in 10 studies (36%), that regression outperformed the neural 

network in 4 studies (14%) and, that they had equivalent performance in 14 studies (50%).  

The sample sizes of the studies varied from 226 to 80,600, with a median around 1,000. 

However, all the studies which found in favour of the neural network had sample sizes 

that were at or below the median. Of the 14 with an ‘equivalent’ finding, 11 were above 

median. Of the 4 with a finding for regression 2 were above median and 4 below. This set 

of results tends to suggest that some or even all of the findings in favour are neural 
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network may be the result of publication bias (because smaller sample sizes have higher 

type I error rates).  

 

But a set of 29 studies is too small to allow for firm conclusions. If a larger set of studies 

finds at least some studies with a large sample size, which have findings in favour of a 

neural network, then publication bias would be viewed as a less universal explanation of 

the distribution of the results. On the other hand if a much larger set still only contains 

findings in favour of the neural network amongst only the studies with small sample sizes, 

then publication bias is a more universal explanation.       

     

Using the same Medline (Ovid) search strategy and the same inclusion criteria as 

Sargent[2001], another 17 studies, published subsequently, were located. These are listed 

in Table 2.3, in a similar format as that used by Sargent [2001] in his Table 1. The 

difference being that in our Table 2.3, we have listed the actual size of the training dataset 

sample and the Validation dataset sample, to facilitate a later analysis of these data, 

whereas Sargent [2001] lists the size of total sample and the % split used derive training 

and validation datasets. Of course, these formats are interchangeable with simple 

calculations.  

 

In Table 2.3 below, there are 4 studies, with training datasets above the median in size, 

which have a finding in favour of the neural network. There are also another 4 studies, 

with training dataset samples sizes above 1000 which have an ‘Equivalent’ or 

‘Regression’ finding as will as several studies with small training dataset sample sizes 
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which find mostly (except for 1 ‘Equivalent’) in favour of the neural network. The 

addition of these studies changes the outlook presented by Sargent’s [2001] analysis.  

 

 
Citation 

 
Regression 

 
ANN 

Training 
Sample N 

Validation 
Sample  N 

 
Result 

Snow et al [2001] LR BP 28,125 9,375 NN 

Colombet et al [2000] LR BP 10,296 5,148 EQUIV 

Li et al [2000] LR BP 9,480 3,160 NN 

Di Russo et al [2000] LR  BP 5,768 4,841  NN 

Han et al [2001] LR BP 4,308 1,436 NN 

Resnic et al [2001] LR BP 2,804 1,460 EQUIV 

Freeman et al [2000] LR BP 1,554 1,465 REGR 

Wang et al [2001] LR BP 1,253 500  EQUIV 

Clermont et al [2002] LR BP 1,200 447  EQUIV 

Finne et al [2000] LR BP 656 Leave one out NN 

Veltri et al [2000] LR BP 636 120 NN 

Orr [2001] LR BP 490 798 NN 

Kim et al [2000] LR BP 409 183  NN 

Verive et al [2000] MR BP 394  69 NN 

Mello et al [2001] LR BP 187 116 EQUIV 

Eldar et al [2002] LR BP 180 45 NN 

Zlotta et al [2003] LR BP 140 60 NN 

 

Table 2.3  Summary information for 17 additional articles published since 
Sargent [2001] which meet, his inclusion criteria.        

 

Figure 2.2, below, demonstrate a changed picture, which emerges with the addition of the 

17 new studies to Sargent’s [2001] original sample of 29 studies. For clarity Sargent’s 

[2001] original 29 studies are represented as open circles and the 17 new studies added in 

the current review are represented as closed circles. Also for clarity the y axis on each 

graph, which quantifies dataset sample size, is on a logarithmic scale. Graph a) displays 

the distributions of training dataset sample size for the three types of outcomes found by 
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the 46 studies, and graph b) similarly displays distributions of validation dataset sample 

size by study outcome. 

        

 

                             

                   a) Training Dataset Size                                       b) Validation Dataset Size 

 
Figure 2.2  Distributions of dataset sample sizes, according study outcome for 

the combined set (Sargent’s [2001] review of 29, plus 17 new 
studies), broken down by review source     

 
 

Looking only at Sargent’s [2001] set (open circles) in Figure 2.2, there are no studies 

which contradict the possibility that the distributions of findings, is due solely to the effect 

of a publication bias. However looking at full set of 46 studies, there are now 4 newly 

added studies, which have relatively large training dataset and validation dataset sample 

sizes (and therefore a low type I error rate), and which have a finding in favour of a neural 

network model in comparison with a Logistic Regression model. It would be more 

reasonable to conclude now, that there is probably a publication bias in favour of neural 

networks, but that there is also evidence that in some clinical applications a neural 

network based model can classify better than a logistic regression based model.  
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Sargeant’s [2001] review, and our extension of it, narrowly selected only comparative 

studies and only those with a relatively good methodology. The empirical literature on the 

application of Neural Networks to Clinical Decision-Making, in general, is of much 

poorer average quality. It is highly disjointed. Many studies are one-offs which do not 

refer to or build upon other studies. The overwhelmingly typical template for studies 

involves the application of a neural network to a relatively small dataset, sometimes with 

a comparison to a traditional statistical technique (such as Logistic Regression), and only 

in a small proportion is some form of cross-validation used. The choice of predictors and 

criterion variables is often idiosyncratic, so that even in the same Clinical Decision-

Making problem domain there is a great deal of variety. This makes it hard to compare 

results between studies or to perform any kind of systematic review or meta-analysis on a 

problem-wide basis. There are few threads in this literature. Most studies fail to consider 

the larger literatures which exist on Clinical Decision-Making and on Discrimination and 

Classification in Statistics.  

 

Despite all this, as we have seen from our extension to the review of Sargent [2001], there 

is empirical evidence that in some clinical decision making problems, neural networks can 

offer a better solution, in terms of better classification, than a logistic regression.       
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2.4  The place of Neural Networks in Decision Making 

Though decision making by clinicians can be dichotomously categorised as clinical 

judgement or statistical, to do so denies the reality that there are a range of decision-

making practices. A more realistic schema is to see clinical and statistical as the extreme 

poles of a dimension of decision-making tasks. At one end is pure clinical decision 

making whereby both the information gathering and the decision-making are relatively 

unstructured. At the other end is pure statistical decision making whereby both 

information gathering and decision-making are mechanical, and there is the important 

proviso that the decision-making component is directly derived from an empirically 

derived relationship. In between there is a continuum of practices whereby there is 

increasing mechanisation of both the information gathering and decision making 

component. Such mechanisation by and of itself will increase the reliability of decision 

making by clinicians, but it will not necessarily increase the validity or accuracy of their 

decisions. Only the addition of an empirically derived decision rule ensures that the 

decision is valid. 

 

To this schema we can now also add neurocomputational decision-making. This is the 

practice of making a clinical decision on the basis of a neural network. 

Neurocomputational decision-making is as yet an unknown quantity. We know from a 

large database of studies that statistical decision-making is the best method overall (in 

terms of prediction), and that structured and automated decision-making is not as good, 

but superior to clinical decision-making. However we do not know the relative ranking of 

neurocomputational decision-making amongst these alternatives.  Table 2.4, below, sets 

out a classification of clinical decision-making practices.  
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Type of 
Decision Making 

 
Definition 

 
Example(s) 

Reliability  
& Validity 

 
Clinical Judgement 

The clinician makes 
decisions using only 
their own judgement. 
Information gathering is 
relatively unstructured 
 

Deciding that a patient has 
schizophrenia on the basis of 
interview, presentation and 
background information 
 

Relatively 
Low 

 
Structured Clinical 
Decision Making 

The clinician makes 
decisions using a 
structured technique. 
The rules for decision-
making are not 
empirically derived.  
Information gathering is 
unstructured or in some 
cases semi-structured 
 

Deciding that a patient has 
schizophrenia on the basis 
that they fit DSM-IV criteria  

 
Higher

 
Automated Clinical 
Decision Making 

The clinician uses 
structured (or 
computerised) interview 
and/or information 
gathering, that in turn 
elicits a diagnosis and/or 
recommendations based 
on a structured decision 
making rule that has not 
been empirically 
derived. 

Using the Computerised 
version of the Composite 
International Diagnostic 
Interview (CIDI) [Andrews 
1991] 
 
Structured interviews that 
elicit DSM-IV or ICD-10 
diagnoses. 
 
Expert Systems e.g. MYCIN 
[Shortliffe 1976] 
 

Higher
 Still  

 
Statistical Decision 
Making 

The clinician uses 
structured information 
gathering and passes on 
the information to an 
empirically derived 
formula or rule, which 
generates a diagnosis or 
recommendation.  

IQ testing and classification,  
 
Parker & Hadzi-Pavlovic’s 
[1993] Sign based index for 
Melancholia, 
 
Einfeld and Tonge's [1993] 
Developmental Behaviour 
Checklist (DBC) cutoff for 
presence of psychiatric 
problems in intellectually 
disabled children and 
adolescents. 
 

Highest 

 
Neurocomputational 
Decision Making 

The clinician uses 
structured information 
gathering and passes on 
the information to a 
neural network trained 
to make diagnoses 
and/or 
recommendations 
 

Baxt's neural network for 
diagnosis of acute 
myocardial infarction in 
casualty ward patients Baxt 
[1990,1996,2002] 

Unknown 

Table 2.4:  Decision Making Practices by Clinicians 
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Figure 2.3 Conceptual Map of Clinical Decision Making Practices 

 

 The Conceptual Map in Figure 2.3 shows where the different practices, defined in Table 

2.4, lay in a conceptual space defined by the degree of structure in Information Gathering, 

the degree to which the practice has an empirical basis and the overall Reliability and 

Validity of the practice. One of the objectives of this thesis is to determine the place of 

Neural Networks on this map. 
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2.5  Neural Networks from a Statistical Perspective  

Psychologists and computer scientists initially developed neural networks, but statisticians 

have now become interested in them as well. A number of statistical writers have pointed 

out that neural networks can be readily interpreted within a statistical framework [White 

1989, Ripley 1994, Sarle 1994, Weiss & Kulikowski 1991, Florio et al 1994, Bishop 

1995, Reed & Marks 1999, Hastie et al 2001] and that they are very similar to statistical 

pattern recognition techniques such as Projection Pursuit Regression and Multivariate 

Adaptive Regression Splines [Ripley 1994, Sarle 1994]. 

 

Linear Classifiers 

The most commonly used statistical approach to developing solutions for clinical 

decision-making problems is to use a linear classification technique [Dawes & Corrigan 

1974]. In its simplest form, when the clinical decision is binary and it can be made on the 

basis of a single score on some variable, this involves finding the optimal cutoff value on 

this variable for classifying those with values at or above the cutoff into one group and 

those with values below into another. 
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Figure 2.4      Classification using a cut-off on a single variable 

 

When there is more than one discriminating variable, a Linear Discriminant Function 

Analysis (LDFA) or a Logistic Regression (LR)2 can be used to combine the variables, 

using a weighted linear combination, into a single scale and then determine a cutoff on 

this new composite scale to classify cases into one group or another [McLachlan 1990]. 

LDFA is a parametric technique that uses the data to estimate parameters of the 

underlying distributions and then apply Bayes theorem to delineate a decision boundary, 

whereas LR directly estimates conditional class membership probabilities. Both 

techniques are optimal in the case of classes which have multivariate normal distributions 

with equal covariance matrices. If the population being sampled is known to have such 

distributions then LDFA is more efficient, otherwise LR should be preferred to LDFA for 

Linear classification [Hand et al 2001, Kiernan et al, 2001]. 

 

                                                           
2 A common use of Logistic Regression is to determine the relative contribution of individual input 
variables to group membership. However a Logistic Regression can also be used to derive an equation that 
can be used to predict group membership on the basis of the input variables. That is, it is used as a 
Discriminant Function and as a method to derive a classification rule. Use of a Logistic Regression in this 
manner is referred to as a Logistic Discriminant (LD) in this thesis.   
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Figure 2.5  Classification using a linear combination of two variables. 

 

Figure 2.5 above demonstrates how a linear combination of two variables can produce 

better classification (less overlap between the two distributions and therefore fewer cases 

are misclassified) than either of the single clinical variables alone. The principle displayed 

in Figure 2.5 can be generalised to any number of variables greater than two. The basic 

aim of both LDFA and LR is to find a linear combination of variables which maximises 

classification, by minimising the overlap between the two groups. 
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The Bayesian Classification Decision Boundary 

Every classification problem has a theoretically optimal solution known as the Bayesian 

Classification Decision Boundary 3[McLachlan 1990]. Implicit in making use of a linear 

approach is an assumption that the best approximation to the Bayesian Classification 

Decision Boundary, for a given problem, is a linear function (a straight line in 2 

dimensions or linear hyperplane in higher dimensional spaces). When there is only one 

variable on which to make the clinical decision this assumption is always necessarily true 

(see Figure 2.4). However when there are two or more variables the assumption may be 

true (as in Figure 2.5), but is not always necessarily true (as in Figure 2.7). For such 

multivariate classification problems the Bayesian Classification Decision Boundary can, 

in theory be any function, a linear function or a non-linear function.  

 

For all classification problems, and therefore all Clinical Decision-Making problems that 

are classification problems, all empirical classification techniques (such as a LDFA, LR or 

Neural Network) are attempts to approximate the Bayesian Classification Decision 

Boundary with a mathematical function that has been derived from a dataset. How 

accurately a classifier performs, depends upon how accurately the Classification Decision 

Boundary produced by the classifier is able to approximate the Bayesian Classification 

Decision Boundary [Ripley 1994, Sarle 1994, Bishop 1995, Reed & Marks 1999].  

 

 

                                                           
 
3 If we know the exact distributions of the classes being classified then we can calculate the boundary, as the 
set of point where the probability of belonging to one or another class changes. However we do not 
normally know these distributions and therefore cannot know the Bayesian Classification Decision 
Boundary in most practical problems. We only know it exists and that it represents the best possible 
classification decision boundary.  
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Piece-Wise Linear Approximation of Non-Linear Functions   

When viewed from a statistical perspective, MLP-type Neural Networks are a non-linear 

function approximation technique. When applied to a classification problem, which has a 

non-linear Bayesian Classification Boundary, they can be used to approximate the non-

linear classification boundary and provide a basis for classification. The approach they 

take to non-linear function approximation has been called piece-wise linear approximation 

[Ripley 1994, Sarle 1994, Weiss & Kulikowski 1991, Florio et al 1994, Bishop 1995, 

Reed & Marks 1999]. That is the non-linear function is approximated, by the fitting of a 

number of linear functions that shadow the form of the non-linear function (see Figure 

2.6. below).  

 

 

 

Figure 2.6  Piece-wise linear approximation (straight lines in grey) of a non-
linear function (curve in black) 
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   a)     b) 

Figure 2.7 Artificial Classification Problem:  
 
a) Distribution plots for two classes: 

Diseased cases (n=300) are 
denoted by diamond shapes (top, 
bottom and left of graph), Non-
Diseased cases (n=300) denoted by 
stars (centre of graph). The x and y 
axes represent scores on two 
symptom scales, 

 

b) The same distribution plot with the 
neural network piece-wise linear 
decision boundary superimposed 

 
Figure 2.7, shows how piece-wise linear approximation by a neural network can be used 

to solve classification problems, which have a non-linear Bayesian decision boundary. 

The clinical decision-making problem is to correctly classify cases using only individual 

case scores on the two symptoms x and y. The three straight lines in Figure 2.7 .b) were 

generated by the hidden units of an MLP-type neural network after it was trained on the 

cases in Figure 2.7. The lines clearly segment the cases into the diseased and non-diseased 

groups. For the data in Figure 2.7, there is no single linear classification decision 

boundary (single straight line), which could solve the classification problem as well as the 

MLP has. The Bayesian Decision Boundary for this problem is a curve. The three straight 

lines, in conjunction, give a good approximation to this curved boundary.   
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The Bias – Variance Trade Off 
 
The goal of training a neural network, for use as a clinical decision making tool in 

psychiatry, is not to learn to optimally classify all the cases in a training dataset (which in 

theory is possible), but rather to build a statistical model of the process which generated 

the dataset, and so be able to optimally classify cases from the population from which the 

training dataset was drawn (Bishop 1995). Accomplishment of this latter goal, with neural 

networks, and numerous other modeling techniques, has been the subject of much 

research and much theory development, over the past two decades. 

 

A seminal contribution, to the area of modeling with neural networks, was made by 

Geman et al [1992], in a paper which examined the application of a well known (in the 

statistical literature) decomposition of Mean Square Error (a measure of regression fit) 

into two components Bias and Variance, as it applies to neural networks. 

 

Bias is the difference between a model and the target function inherent in a population, 

which the model is attempting to approximate. Geman et al [1992] measured bias (see 

formula 2.1 below) by calculating the average error on a large test set (of size N = 600), of 

a number of versions (M = 50) of the same model (derived by training the model on 50 

(M) training datasets (of 200 cases each) sampled randomly from a pool of 600 training 

cases). 

 

Variance is the difference between different versions of the same model which arise due 

to training on different training datasets. Geman et al [1992] measured variance (see 

formula 2.1 below) by calculating the average difference on a large test set (of size N = 
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600), between a number of versions (M = 50) of the same model (derived by training the 

model on the 50 training sets, sampled randomly from a pool of 600 training cases), and 

the average response of all these models (see below for how this is calculated). Equation 

2.1 below presents the equation used by Geman et al [1992] to calculate MSE, bias and 

variance and also shows the interrelationships between these terms.   
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       |_____________|          |__________|        |_______________|  

   Mean Squared Error     =         bias2                 +           variance 

 

Where : 

  N  is the number of cases in the test dataset 

          i   is an index for cases in the training dataset, i ranges from 1 to N 

  M is the number of training datasets used 

   j is  an index for training data sets, j ranges from 1 to M 

  ti   is the true or target value of the ith case in the test dataset  

yij   is the output of the model trained on the jth training dataset to  
the ith case in the test dataset 

 

∑
=

=
M

j
iji y

M
y

1

_ 1    is the average output of the M models derived from M   

training datasets for the ith case in the test dataset.  
   

 

Note:   Equation 2.1 above has been adapted from Geman et al [1992]. 

 

 39



 Chapter 2    Artificial Neural Networks   

 

 

  

Figure 2.8 The relationships between Mean Square Error measured on a 
Training Dataset, Mean Square Error measured on a Test Dataset, 
Bias and Variance, as a function of the progress of training through 
successive iterations of a training algorithm such as Backprop. 
(Adapted from Gemen et al [1992]).  

 

  

Using the above formula, Geman et al [1992] and applying to a dataset of 1200 

handwritten digits (600 for training datasets, 600 for the test dataset), demonstrated firstly 

that the test dataset Mean Square Error (MSE) varies as the sum of bias squared and 

variance (according to equation 2.1) at any particular point in training, and secondly that 

as training progresses bias decreases and variance increases in such a way that Test 

Dataset MSE at first decreases and then begins to rise. As a consequence, there is point in 

training where Test Dataset MSE is at minimum. Up until this point, decreases in bias 
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have outweighed increases in variance, so the value of Test Dataset MSE has 

progressively decreased. Beyond this point, increases in variance outweigh further 

decreases in bias, and as a result, Test Dataset MSE increases. The point designated “Stop 

Training Point” in Figure 2.8, is the point at which training should be stopped, in order to 

obtain a model which generalises the best (Geman et al [1992]). If one stops training at 

any point either to the left or to the right of this point then the associated models will all 

generalise less well than the model associated with the point of minimum Test Dataset 

error. 

 

Geman et al [1992] also demonstrate that bias and variance (and therefore Test Dataset 

MSE) also vary as a function of model complexity. That is as complexity increases from 

low to high, bias and variance behave similarly as they do in response to training 

proceeding from few to many iterations. As a consequence, Test Dataset MSE also 

behaves similarly, that is it has a minimum value at some point on the complexity 

continuum. In the case of MLP type neural networks, the common way in which to adjust 

model complexity is to vary the number of hidden units. MLPs with fewer hidden units 

have a lower complexity than those with more hidden units. These relationships are 

presented in Figure 2.9 below. 
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Figure 2.9  The relationships between Mean Square Error measured on a 
Training Dataset, Mean Square Error measured on a Test Dataset, 
Bias and Variance, as a function of model complexity, which is 
adjusted by varying the number of hidden units. (Adapted from 
Gemen et al [1992] and Hastie et al [2001]).  

 

The striking feature of Figure 2.9 is its strong resemblance to Figure 2.8.   The main 

difference is that we have substituted complexity for training iterations as the x-axis of the 

graph. Complexity is directly related to the number of adjustable parameters in a model. 

For MLPs, an easy way to vary complexity is to add or remove hidden units. This adds 

and removes the weights of the connections made by those hidden units, and it is these 

weights which are the adjustable parameters of the model embodied in an MLP type 

neural network. The reason for the similarity of effects between training and complexity is 

that training is, in some sense, a complexity realisation process. At the start of training, 

the weights of an MLP are initialised to a set of small (near zero), random values. A zero 
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weight is effectively a non-weight or in the case of a model a non-parameter. In this sense, 

the MLP at the start of training has a low effective complexity. As training progresses, 

The MLP weights are updated to minimise error in respect to a Training Dataset. That is 

they develop values, which depart from zero, and raise the effective complexity of the 

MLP model. The ceiling on complexity, that a particular MLP model can achieve, in 

training, is determined by the number of parameters it contains. So MLP with more 

parameters (usually determined by having more hidden units), can implement more 

complex models. As a consequence, we observe similar relationships between bias, 

variance, and Test Dataset error in relation to both training and complexity. The model 

selection point, in Figure 2.9, is the minimum point of Test Dataset error. The model at 

this point on the complexity continuum represents the best model, in terms of 

generalisation to future cases drawn from the same population. 

 

Figure 2.9 is misleading in one respect. It suggests that the minimum point of Test Dataset 

Error, the best model, is always at a level of complexity beyond the lowest possible. In the 

case of neural networks, the least complex model is a linear logistic regression model (i.e. 

an MLP with no hidden units, where inputs connect directly to an output unit). It is of 

course possible, in fact common, that the linear model is the best model. In which case 

progressing to models of any higher complexity causes the increase in variance to exceed 

the decrease in bias obtained, and hence results in inferior models, which have a greater 

Test Dataset Error. In such cases the minimum lies at the beginning of the Test Dataset 

error curve and this is the also the Model Selection Choice Point. 
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Figure 2.8, on the other hand is not misleading in the same respect. The same situation 

would almost never occur in respect of training (unless, the data was generated by a 

random process), a newly initialised model would have a very high bias, which would 

drop rapidly in the initial few iterations of training. At the same time, in these initial few 

iterations, the variance would begin to rise, but the rate of rise would at first be slow. As a 

result, Test Dataset Error is likely to initially fall, reach a minimum value and then rise 

once the decrease in bias slows and the increase in variance quickens.           

     

Our aim in developing a good classification model, for a clinical decision making 

problem, is to obtain a model, which has the lowest possible test dataset error. Since test 

dataset error is a simple additive function of bias and variance, then ideally what we need 

to do is to attempt to arrive at minimal values for both. However, as shown in Figures 2.8 

and 2.9, it often the case that an action which decreases the value of one, will also 

increase the value of the other. Geman et al [1992] liken this to the uncertainty principle 

in quantum physics. Thus as iterative training progresses bias decreases and variance 

increases. Similarly, if we increase the complexity of an MLP type neural network model 

by increasing the number of hidden units, then again there will be a decrease in bias 

accompanied by an increase in variance. Importantly though, the growth and decay curves 

of variance and bias with respect to training and complexity are problem and training 

dataset dependent. The crucial factors, which determine the location of the minimum on 

the test dataset error curve, are the rates of change of bias and variance. The test dataset 

error minima, is located at the point where the rate of increase in variance begins to 

exceed the rate of decrease in bias. 
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One strategy for reducing test dataset error is to increase the sample size of the training 

dataset. Doing this will shift the variance growth curve to the right with respect to both 

training and complexity. This is because each trained model is now more likely to be 

similar to the average of that model (the central limit theorem predicts this behaviour). A 

consequence of this is that a lower bias value is reached before the cross-over of rates of 

change of the curves is encountered and also the cross-over point will correspond to lower 

values of both bias and variance. Thus, test dataset error (the sum of bias and variance) 

will be lower for a training dataset of increased sample size.                

 

In figure 2.9, the model complexity of an MLP is varied by adjusting the number of 

hidden units, which in turn adjusts the number of model parameters (MLP Weights). 

However, there are other schemes for adjusting the effective complexity of the model 

embodied in an MLP type neural network. We have already pointed out that stopping 

training early, at a point where generalisation appears to be maximised, is a way of 

reducing the effective complexity of the model. At this point, the weights have been 

adjusted more under the influence of bias, than under the influence of variance.  Some of 

the weights are still relative close to their near zero initialisation values, and are, in some 

sense, non-parameters in terms of the model. This reduces the effective complexity of the 

model to that of a model with fewer parameters.      

 

Another scheme is to implement regularisation as part of the algorithm, used in training, 

to update the weights. This is commonly known as Weight Decay. In such a procedure, a 

proportionate amount of the value of each weight is subtracted from the value of the 

weight, after each weight update. This introduces a tendency into the training algorithm 
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for weights to reduce in magnitude, as training progresses. The end result is that weights 

which do not grow in magnitude, in response to the Training Dataset, as training 

progresses, will tend towards zero. Thus, unneeded weights are systematically eliminated 

(zeroed) by training and the effective number of model parameters (the effective 

complexity) is lowered. 

 

Bias-Variance and generalisation in classification problems 

Hastie et al [2001] extend the work of Geman et al [1992] in two ways. Firstly they point 

out that in classification problems where the Bayesian decision boundary does not result 

perfect separation of the classes there needs to be a third term inserted into the formula 

presented by Geman et al [1992] to account for the irreducible error or Bayes error due 

to class overlap.  

 

Secondly, Hastie et al [2001] examined the relationships of bias and variance to 0–1 loss 

calculated on Test Dataset. 0-1 loss is a more natural error function for problems 

involving classification rather than regression, because it veridically reflects the yes/no 

nature of group membership than does a continuous variable. Using simulated data, and 

comparing the use of the two different error functions calculated on a large test dataset, 

they demonstrate that 0-1 loss shows the same overall pattern as MSE in relation to 

complexity, that is a minimum at some point on the complexity continuum. But in 

contrast to MSE, they found the value of 0-1 loss is not a simple additive function of the 

values of bias and variance, but a more complex function of bias and variance, which 

contains interaction terms. As a consequence the locations of minima, on the training and 

complexity continua, for 0-1 loss and for MSE are different. Thus while bias and variance 
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are still the determinants of the generalisation error, the nature of the exact functional 

relationship is different.  

 

The form of this relationship is outlined by Domingos [2000], who develops a unified 

decomposition of prediction error into bias and variance, that applies to both MSE and 0-1 

loss functions,. His decomposition shows that for 0-1 loss, bias is always additive to loss 

(as it is for MSE) but unlike the case of MSE loss, variance can be either additive or 

subtractive in respect of 0-1 loss. That is, in some circumstances an increase in variance 

leads to a decrease in generalisation error rather than an increase as it always does with 

MSE. 

 

Summary & Conclusions 

There several important conclusions we can draw from our consideration of the Bias – 

Variance Trade Off. 

 

Firstly the general nature of the relationship between bias and variance in statistical 

models for classification based upon MLP type neural networks is one in which both 

contribute to generalisation error. At the level of an individual MLP model, trained on a 

fixed size training dataset, a decrease in one will result in an increase in the other. In 

practice this means that generalisation error can never reach the absolute Bayesian 

minimum (which in itself introduces a basement level of irreducible error), for a particular 

problem, as it will be cushioned by an amount of error, dependent upon the amounts of 

bias and variance. In some cases, the size of the ‘cushion’ created by bias and variance 

may be relatively large. 
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Secondly, there are several strategies, suggested in the framework of the Bias-Variance 

dilemma, which can be used to improve the generalisation accuracy of a neural network 

based classifier, under development. Firstly, one can increase the training dataset sample 

size, as this attenuates the rise of the slope of the variance curve with respect to training, 

complexity and dimensionality. Secondly, because we known the best model (in terms of 

when to stop training or what level of complexity is optimal) is obtained at the point 

where gradient of decrease in bias is exceeded by the gradient of increase in variance and 

that this point can, in practice, be located as the minimum value obtained by measuring 

error on a test dataset, then we can use this the turning point of test set error as a criterion 

for these decisions. Thirdly, we can introduce a regularisation scheme, such as weigh 

decay which reduces the effective complexity of the model. Finally for classification 

problems we should use a 0-1 loss function, rather than MSE, as our measure of error, 

because the conjoint influence of bias and variance on 0-1 loss is different (more 

complex) than it is for MSE and this results in the minima for 0-1 loss being located 

differently to the minima for MSE, with respect to variation in training, complexity and 

dimensionality. 

 

Thirdly, the training dataset size, the point at which we stop training, complexity and 

dimensionality are, in some sense, an interrelated set of hyperparameters that define a 

manifold surface with respect to generalisation error, in a solution space, not dissimilar to 

the way in which the weights of an MLP define an error surface. As such, this surface is 

likely to have regions of minima which define ‘good solutions’. Also, underlying this 

error surface in this hyperparameter defined solution space, there would be bias and 
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variance surfaces, which directly determine the shape of the generalisation error surface. 

Because all these hyperparameters trade-off against each other, then the ‘good solutions’ 

regions will tend to lie around the origin of the space, fingering out only along the axes. 

That is a good solution involving, a maxed out value of one hyperparameter, is more 

likely to possible only when the values of all the other hyperparameters are relatively 

small. Good solutions in regions where most or all the hyper-parameters are 

simultaneously maxed out, are highly unlikely if not impossible. For example, one would 

not consider a combination of small training dataset size, high dimensionality, high 

complexity and training continuing until the training error reached a minimum, as a path 

to a good solution. The hyperparameters need to traded-off in some fashion as part of the 

model search strategy. Development of a more systematic approach to working through a 

hyperparameter space in relation to using a neural network approach with a particular 

classification problem is something that warrants the attention of future research. 

However, there is one index value, affected by all the hyperparameters, which can be used 

as a constraint to guide model search. That is the subject to parameter ratio (SP ratio), that 

is the ratio of the number of training cases to the number of model parameters. Ripley 

[1996], suggests that good generalisation is not possible once the SP ratio drops below 5. 

Therefore, we can constrain our search, by limiting it only to models with large SP ratios 

and use the magnitude of the SP ratio as index to value models. That is higher SP ratios 

are to be preferred in models that appear to be performing equally.  
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2.6  Conclusions 

Neural networks are a new type of computer system, inspired by the functioning of 

neurons in the brain and CNS. They are particularly suited for the development of 

applications that rely upon pattern recognition or pattern categorisation.  These are the 

kinds of problems that traditional techniques have been unable to satisfactorily address. 

Neural Networks have been successfully applied to range of applications, such as speech 

recognition and handwritten postcode digit recognition. There is a growing interest in 

applications using neural networks in clinical decision-making problems in medicine, 

with some systems such as PAPNET becoming widely used. 

 

Psychiatry contains many clinical decision making problems which have not been 

satisfactorily solved and which are good candidate applications for using neural networks. 

The use of clinical judgement has been found to have significant limitations. Structured 

decision-making overcomes some of these, but we also know that it is not as effective as 

statistical decision-making. Adoption of the latter by clinicians has been very slow.  

 

The advent of Neurocomputational decision-making provides a new alternative that has 

most of the features of statistical decision-making. Both statistical decision-making, and 

neurocomputational decision-making are empirically based. The key difference is that 

neural networks are able to exploit non-linear relationships in data, which traditional 

linear statistical techniques do not, provided the Bias-Variance Trade Off allows this for a 

particular problem. In terms of the classification schema outlined in Table 2.3 (Decision 

Making Practices by Clinicians), Neurocomputational should conceptually be considered 

to be a type of Statistical Decision-Making.  
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Therefore, in theory, neural networks should be able to better solve some clinical decision 

making problems in psychiatry, but this has yet to be demonstrated empirically. 

Furthermore, due to a lack of experimentation with, and application of, neural networks to 

psychiatric clinical decision-making, little is known about issues of practical application 

of neural networks to psychiatric clinical decision-making. 
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