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Chapter 3 

EVALUATING DIAGNOSTIC CLASSIFIERS 
 

 

“The Classification problem is: Given a finite set of classified examples 

from a population, described by their values for some set of attributes, 

infer a mechanism for predicting the class of any member of the 

population given only its values for the attributes.” [Martin & 

Hirschberg. 1996].  

 

A classifier is any method (such as LD or MLP), which can be used to attempt to solve 

“The Classification Problem”.  This chapter is an exposition of methodological issues 

relevant to evaluating a classifier and to comparing two or more classifiers with one 

another and drawing conclusions about their relative benefits in clinical settings.  

 
3.1  Measuring the Accuracy of a Diagnostic Classifier  

 

3.1.1 The “Gold Standard” 

The accuracy of a classifier can only be assessed against another classifier. This other 

classifier is usually referred to as the “Gold Standard”. This infers that this other classifier 

is the best possible (or at least a relatively good) method for making that particular 

classification for cases. This begs the question of why not use the Gold Standard all the 

time. There may be several reasons:  
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Firstly the gold standard is sometimes an outcome that only becomes fully known at some 

later time. We may be interested in predicting this outcome an earlier stage. In this case we 

can use our knowledge of the eventual outcome to retrospectively validate earlier 

predictions and conclude about the usefulness of those predictions at that time. An example 

of this is the later (in this thesis) use of an evaluation of response to treatment with 

stimulant medication of children with Attention Deficit Hyperactivity Disorder (ADHD) 

greater than 6 weeks after treatment has commenced to validate predictions about this 

response made before treatment commences.   

 

Secondly, the gold standard may not be widely or practically available. It might only be 

possible in a small number of locations; it might require equipment that is not widely in 

use, it might require expertise, which is relatively rare. An example of this is the later (in 

this thesis) use of a diagnosis of Autistic Disorder made at specialist diagnostic clinics to 

validate a diagnosis made with a parent-completed checklist in community settings. 

     

Thirdly, the gold standard may be the currently accepted method for making the 

classification or clinical decision. When a new method for making the same decision 

arrives, it is natural to make a comparison. An example of this is the later (in this thesis) 

use of current diagnostic practices for the diagnosis of Melancholia as the gold standard 

against which to compare the newer procedure. 

 

Finally as Faraone & Tsuang [1994] point out, in Psychiatry there is often a lack of an 

absolute gold standard. In many other branches of medicine, there are definitive outcomes 

such as death, or clear physical evidence of the presence or absence of a disease, which can 

be used as outcomes. However in Psychiatry, outcomes are usually evaluated by the 
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judgments of professionals rather than a physical process such as laboratory test. In such a 

situation, Faraone & Tsuang [1994] recommend the use of multiple convergent criteria as 

gold standards. An example of this is the later (in this thesis) use of three different 

diagnostic criteria for Melancholia (Clinical, DSM and Newcastle) to evaluate diagnoses of 

Melancholia made with a neural network.        

     

3.1.2 Measures of Accuracy 

Once a gold standard is chosen, the next question is how can information about the gold 

standard status of cases be used to evaluate a classifier and to compare different classifiers. 

There are several indices, which can be used to evaluate classifiers relative to a gold 

standard. Refer to Table 3.1 below for definitions of the various indices 

 

 

                         Classifier 
 
Gold Standard 

 
Positive 

 
Negative 

 

 
Total 

 
Positive 

 

 
True Positives (TP) 

 
False Negatives (FN) 

 
Positive 
Population (PP) 
 

 
Negative 

 
False Positives (FP) 

 
True Negatives (TN) 

 
Negative 
Population (NP) 
 

 
Total 

 
Classed Positive (CP) 

 
Classed Negative (CN) 

 
Total 
Population (P) 
 

 

Table 3.1  Classifier Outcomes compared to a Gold Standard. 
           (adapted from Ley [1972] and Rey et al [1992]) 
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Proportion Correctly Classified 

The simplest measure of a classifier’s performance is the proportion of cases that it 

correctly classifies, relative to the gold standard.  

 

Proportion Correctly Classified = (TP + TN)/P 

 

This is the probability of a correct classification relative to the “Gold Standard”. It is 

sometimes also referred to simply as “Accuracy”.  The inverse of Proportion Correctly 

Classified (1- Proportion Correctly Classified), the Misclassification Error Rate (also 

known as the “Error Rate”) is also sometimes used, particularly in engineering applications, 

as a measure of classifier accuracy.   

 

Sensitivity 
 
The sensitivity of a classifier is a measure of how well it identifies cases with a positive 

diagnosis. Formally it is the proportion of cases with a positive diagnosis classified as 

having the diagnosis. It can range from 0 (worst) to 1 (best). The term True Positive Rate is 

synonymous with Sensitivity. 

   
Sensitivity = TP/PP    

 
 
Which is the probability that a positive case will be classified as a positive case. 
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Specificity 

It is desirable for a classifier to be sensitive, but it should also be specific. The Specificity 

of a classifier is the proportion of cases with a negative diagnosis classified as not having 

the diagnosis. It can range from 0 (worst) to 1 (best). The term False Positive Rate (also 

known as the “False Alarm Rate”) is equal to 1 minus Specificity. 

  
   Specificity = TN/NP 
 
 
This is the probability that a negative case will be classified as negative case. 
 
 
 
Positive Predictive Value (PPV) and Negative Predictive Value (NPV) 
 
Whilst Sensitivity and Specificity are good overall indicators of a classifiers performance, 

information about the base rates of classes needs to be considered in individual clinical 

seetings. The Positive Predictive Value (PPV) is the proportion of the cases classified as 

positive who actually have a positive diagnosis. This tells an individual patient (or a 

clinician about an individual patient) classified as having a positive diagnosis what their 

probability of actually having that diagnosis is. It can range from 0 (worst) to 1 (best). 

 

   PPV = TP/(TP + FP) 

 

Which is the probability that a case classified as positive, actually is positive. 

 

Similarly, the Negative Predictive Value (NPV) is the proportion of the cases that are 

classified as negative that actually do not have the diagnosis. This tells an individual 

patient classified as not having the diagnosis what is their probability of actually not having 

that diagnosis. It can range from 0 (worst) to 1 (best). 
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   NPV = TN/(TN + FN) 

 

Which is the probability that a case classified as negative, actually is negative 

 

Az  - Area Under the Receiver Operating Characteristics (ROC) Curve 

A classifier usually classifies by first calculating a score on scale and then using a cut-off 

point or threshold on that scale to classify into categories. Sensitivity, Specificity, PPV and 

NPV will all vary as function of the classification threshold (cut-off point) of a classifier. 

At varying cut-off values, trade-offs occur between sensitivity and specificity and between 

PPV and NPV.  

 

The ROC (Receiver Operating Characteristics) curve is a plot of how the classifier 

performs over the entire range of possible choices of cut-off values. Each point on the 

curve represents the True-Positive Rate (Sensitivity) plotted on the y-axis and the False-

Positive Rate (1 – Specificity) plotted on the x-axis that results from a particular cut-off 

value.  

 

The curve is anchored at two points, 0,0 and 1,1. At 0,0 there is no sensitivity (i.e. no cases 

are classified as positive and therefore none of the positive cases are identified), but since 

all cases are classed as not having the diagnosis, Specificity is perfect (1) in that all 

negative cases are classified correctly. The cut-off value at this end is high. At the other end 

(1,1) the cut-off value is low and all cases are classified as having the diagnosis. Therefore 

Sensitivity is perfect (1) and all the positive cases are classified correctly. However 

Specificity is zero because no cases are classified as not having the diagnosis.  
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A ROC curve, which is a straight line between the two anchor points, represents a 

classifier, which does not classify above chance. That is, there is no relationship between 

the classifier’s output score and the gold standard. This is the worst possible classifier. The 

more the ROC curve bulges away from the “worst possible classifier” line, the better the 

classifier is at classifying. This is because improvements in Sensitivity or Specificity, that 

come about as result of changes to the cut-off, do not come at great reciprocal cost. That is 

a given gain in Sensitivity will not cost an equal loss in Specificity. The best way to 

measure the size of this bulge away from the midline is to calculate the Area under the 

ROC curve (AUC), which is also known as the statistic Az. This index gives an overall 

measure of the classifier as whole, across all possible cut-off point. 
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Figure 3.1   Typical Receiver Operating Characteristics (ROC) curve. The 45-

degree line is the chance ROC Curve (no agreement with the “Gold 
Standard” which is above chance). The Area under the ROC curve 
(Az) is an index of how well the classifier, on which the curve is 
based, classifies overall. 
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Az  

Classifier 
Accuracy 

 
.90  - 1.00 

 
Excellent 
 

.80  - .89 Good 
 

.70  - .79 Fair 
 

.60  - .69 Poor 
 

.50  - .59 Fail 
  

 
 
 
Table 3.2   Metz’s classification of Areas Under the ROC Curve [Metz 2002]   
 
 
Table 3.2 above presents a classification scheme for values of Az  (the Area under the ROC 

Curve), which can be used for evaluating the results of analyses using ROC Curves. 

  

 
Which Measure(s) should be used? 
 
The answer is different measures are better in different situations. Different measures give 

different information about a diagnostic system(s) under evaluation.  It is important to 

know which measures contribute to which evaluations. 

 

For the overall comparison of classifiers, the Area Under the ROC Curve is the best 

measure. It measures compares classifiers across their whole range of possible cutoff 

values. In abstract terms this measure can be used to judge and compare classifiers as a 

whole. However there is one proviso. Two ROC curves can have equal areas but still be 

different. They can bulge (or flatten) at different parts of the curve. Thus their areas can be 
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the same but their shapes different. In clinical applications this can have important 

consequences. We always use a classifier with a specific cut-off point, which translates into 

specific values for Sensitivity and Specificity. In such a case, where two ROC curves have 

the same or similar values for Az, careful comparisons of Sensitivity and Specificity in 

ranges of interest for these, should guide the choice of classifier amongst candidates 

[McNeil & Hanley 1984]. 
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Figure 3.2  Two ROC Curves with the same or similar values for Az (Area under 

the ROC Curve), but different shapes and therefore different 
accuracies in specific Sensitivity or Specificity ranges of interest.  
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At the time of application of a classifier as a diagnostic practice, we are more interested in 

the performance of the classifier at a specific cut-off value, than we are in performance 

over the entire range of possible cut-offs. Once a cut-off value is chosen Sensitivity and 

Specificity are the appropriate measures by which to judge and compare classifiers and 

diagnostic practices. These measures inform clinicians about the performance of the 

classifier as implemented, not in abstract terms. Conversely the choice of cut-off can be 

made to so as to achieve a given level of sensitivity and/or specificity [McNeil & Hanley 

1984]. Therefore before making a choice amongst candidate classifiers, where Az, values 

are similar, visual inspection of the ROC curves is recommended.   

 

Finally, from the point of view of individual patients, or of clinicians in a particular  

clinical setting, the Positive Predictive Value (PPV) and the Negative Predictive Value 

(NPV) of a diagnostic practice need to be considered. These measures take account of the 

“Base Rate” [Ley, 1972], which is proportion of patients, amongst all patients to whom the 

practice is applied, that actually have the diagnosis (PP/P in Table 3.1).        
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3.2 Generalisation Assessment 
 

Regardless of the measure used, the apparent accuracy of a classifier on a training dataset is 

an optimistic overestimate of the classifier’s true accuracy [McLachlan, 1990]. It is 

optimistically biased as a result of capitalisation on chance relationships between the input 

variables and the output variable(s) that occur in samples drawn from a population. The 

classification accuracy on new cases will be less than that obtained with the training set 

[Hand 1985, 1997, McLachlan, 1990, Ripley 1994, 1996, Bishop 1995, Reed & Marks 

1999, Hastie et al 2001]. Therefore it is not a valid practice to compare classifiers using 

accuracy measures derived from a training set. 

 

Optimistic bias occurs because classifiers can overfit, as previously discussed in Chapter 2 

under the topic of the Bias – Variance Trade Off. Classifiers fit (approximate) the target 

function between the inputs and outputs (Bias component), but in addition they also fit 

chance relationships, which arise due to sampling noise (Variance component). The 

location in the input space of each case in the training set is determined by two factors:  

 

1. The underlying target function (which is a deterministic relationship between inputs 

and outputs), referred to as the bias component and; 

2.  Variations in input values, which are due to all other factors (which are not being 

measured or used as inputs), referred to as the variance component, or as noise. 

 

Across a population this noise has a zero mean effect upon the values of input variables. 

That is it averages out across all cases. When we draw a sample from a population, it is a 

subset (in some instances a small subset) of the population and the impact of noise across 
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all the cases is unlikely to average out in that sample. Thus each sample has unique biases, 

due to noise, which a classifier cannot discriminate from the target function, and therefore 

the classifier mistakes these biases as being a part of the target function.         

    

This problem, which was discussed more extensively in chapter 2 as the Bias-Variance 

trade-off, is widely recognised and number of strategies, have been developed to overcome 

it. These are discussed below. 

 

3.2.1 Strategies for the Measurement of Generalisation 

There have been a large number of methods developed which attempt to measure 

generalisation accuracy. That is how well the classifier will be able to classify future cases. 

In this section we discuss those which seems to be the most commonly used in the medical 

clinical decision making literature   

 

Cross-validation 

The best way to assess generalization (for any classifier) is to use a large independent test 

data set, which has been randomly drawn from the population to which it is intended that it 

will be applied. This method is referred to as Cross-Validation. 

 

It is important that the test dataset (as well as the training data set) is randomly sampled 

from the population, because this reduces sampling biases. Without random sampling there 

is an increased probability that sampling could result in a poor representation of the target 

function in at least some sub-region(s) of the input space. 
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For similar reasons it is also important that the size of the test data set is large. A small or 

medium sized test set may not have a good representation of all the important features of 

the function being approximated. If this is the case then the prediction of generalization 

made from this test data set may not be accurate. 

 

Both the training data set and the cross-validation test data set need to contain a large 

number of cases. In many clinical decision-making studies, the number of cases available to 

an investigator(s) for use in training and in cross-validation may not be large. How should 

the available cases be apportioned to training and cross-validation data sets? Reed & Marks 

(1999) reason that since both are important and it is not possible to weight one as more 

important than the other, then the apportionment should be 50-50.  

 

When the number of cases available for an investigation is small, cross-validation may not 

be a viable strategy. 

 

K-fold Cross-validation (also known as “leave k out cross-validation”) 

This method is a variation of cross-validation, which makes use of all the available cases 

for both training and cross-validation. In this method the classification rule is derived 

several times, each time leaving out a fixed number (k) of cases and each time cross-tested 

on this small set of k cases. The process is repeated, each time with a different set of k 

cases left out and used for validation, until all cases have participated in cross-validation. 

Thus all cases are used for derivation and for cross-validation, but no individual case 

participates in both simultaneously. The number of correctly classified cases in the cross-

validation samples, across all N/k trials (where N is the total number of subjects in the 

study), determines the estimated accuracy of the classifier. Monte Carlo studies have found 
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that “leave k out” cross-validation, whilst better than no cross-validation, has an optimistic 

bias (McLachlan, 1990; Efron & Tibshirani, 1993). That is, it overestimates the true 

accuracy of a classifier.  

 

Jacknife 

The Jacknife is an extreme version of K-fold Cross-validation in which, one case is left out 

of the training data set, the classification rule is derived and then the left out case is 

classified with it. This procedure is repeated for all cases, that is N times. The obvious 

problem with this is that it is computationally expensive, though with small data sets it may 

be an appropriate strategy. Another name for this procedure is the “leave one out’ method. 

 

Bootstrapping 

A more recently developed technique for estimation of classifier accuracy, that makes full 

use of the dataset to derive the classification rule, is bootstrapping 1(Efron & Tibshirani, 

1993). This method is similar to “leave k out” cross-validation but has some important 

differences. First the classification rule is derived on the whole data set to give an 

optimistic estimate of the classification accuracy (known as the apparent accuracy). Next a 

number of bootstrap data sets are developed each with the same N as the original data set, 

using random sampling with replacement (i.e. a case is selected and placed in the bootstrap 

set and then it is replaced in the pool of N cases so that it can be possibly re-selected). Thus 

each bootstrap data set has N subjects some of which may be duplicates. Each bootstrap 

sample is then used to derive a classification rule, which is cross-validated on the original 

full data set. The mean difference, across all bootstrap samples, between classification 

                                                           
1 The term bootstrapping is engineering jargon for a process that starts and/or fuels itself and does not rely 
upon external influences. The www.dictionary.com definition is:  “Being or relating to a 
process that is self-initiating or self-sustaining”  
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accuracy on the bootstrap sample itself and on the cross-validation sample (original data 

set) is used to estimate the magnitude of the optimistic bias between the derivation samples 

and the cross-validation sample. Also, because the optimistic bias estimate is a mean 

derived from many bootstrap samples, it has a standard deviation, which can be used as an 

estimate of the accuracy of the optimistic bias estimate. The generalisation accuracy of the 

classifier (how it should perform on any random sample of the population) can then be 

calculated by subtracting the estimated optimistic bias from the apparent accuracy of the 

classifier trained on the whole original data set. Efron & Tibshirani (1993) and McLachlan 

(1990) both summarise the theoretical work and simulation studies, which indicate that use 

of bootstrap estimation of classifier accuracy is only slightly more optimistic than the use 

of a large cross-validation sample.    

 

 

3.2.2 Estimating Generalisation Potential 

It is often the case that we not only want to know how well a classifier can classify given its 

current training dataset, but we would also would like to estimate how well it might do if 

the training data set size was increased. The law of large numbers in statistics suggests, and 

many studies (see Reed & Marks 1999) have demonstrated that as training data set size 

increases, the training data set error eventually converges to the same value that is obtained 

on a large test data set.  In bias-variance dilemma terms (see Chapter 2), at large sample 

sizes the variance curve is so shifted to the right that the impact of variance is negligible in 

training and the decreases in  bias at each successive step in training far outweighs any 

increase in variance.     
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Figure 3.3:  Training data set & test data set error rates by training data set 
sample size (Adapted from Reed & Marks, 1999) 

 

In figure 3.3 above, the line falling from high error to lower error as the training data set 

sample size increases is the classification error rate measured on a large test data set. The 

Line rising from low error to high error as training data set sample size increases is the 

classification error rate measured on the training data set. Thus as a function of increasing 

training data set sample size three things occur. Firstly, the classification error rate as 

measured on the training data set itself rises to an asymptotic value, which is reached only 

at very large training data set sample sizes. Secondly, the classification error rate as 

measured on a large test data set falls to an asymptotic value, which is reached only at very 
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large training data set sample sizes. Thirdly, both these error rates converge to the same 

asymptotic value, which is reached by both only at very large training data set sample sizes.   

 

The explanation for the behaviour observed in Figure 3.3 is that as training data set sample 

size increases, from small to large, the Error Surface of the training data set begins to more 

closely approximate the Error Surface of the population and by extension the Error Surface 

of the test data set, which to be effective has a very large N. (see Appendix 2 section 2.8 for 

an exposition of Error Surfaces) 

 

      As       ↑       then                                                    (3.1) TrainN Pop
w

Test
w

Train
w EEE )()()( ≈⇒

 

We can also deduce from figure 3.3 that unless the training dataset sample size is very 

large, then error measured on the training dataset is an overly optimistic estimate of the real 

error that would apply in the classification new cases.  At small and very small training 

dataset sample size, the degree of optimism is extreme. 

  

LeCun et al (1990) have suggested that the convergent error rate of a classifier, which they 

label as E∞  (to indicate that it is the error rate that would be obtained with an infinitely 

large training data set), can be estimated from medium to large size training data sets by 

averaging training data set error rate with the test data set error rate. That is: 

 

                                           
2

testtrain EEE +
=∞                                                      (3.2)      
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Note that E∞ is not a measure of the classifier’s generalisable performance, with the current 

training data set (Etest is). E∞ is a measure of the classifier’s (in its current configuration) 

potential generalisable performance with a much larger training data set.  As well, they 

suggest that the difference between E∞ and Etest can be used as guide to the gain in 

reduction of generalization error that can be expected from increasing the training data set 

sample size. LeCun et al (1990) also suggest that their E∞ estimate (formula 3.2) can also be 

used as criterion for deciding how many hidden units are optimal, sub optimal or super 

optimal. In practice though, medium sized training datasets would need to be used to make 

these calculations. 

 
 

3.3 Subgroup or Spectrum Effects 
 

Another important consideration for the evaluation of classifiers and/or diagnostic 

procedures is to have knowledge about the accuracy of the classification in reference to 

subgroups, which are likely to be in the population(s) in which it will be implemented. The 

presence, absence and mix of subgroups may vary considerably from one place of 

application to another, and this will naturally lead to variations in diagnostic accuracy, 

possibly from very poor to very good, if accuracy is high in some groups and low in others. 

This phenomena an extension of the “base rate problem” discussed by Ley [1972], was first 

raised by Ransohoff and Feinstein [1979] and has recently been termed “the Spectrum 

Effect” by Mulherin and Miller [2002]. 

 

Many classifiers and new diagnostic procedures are developed and cross-validated in 

artificially constructed populations, which are composed by amalgamating an identified 

clinical group with a control group. “Real” clinical populations, that is those seen in the 

 70



Chapter 3         Evaluating Diagnostic Classifiers 
 

clinical settings in which the new practice is likely to be applied, are likely to contain a 

different mix of these subgroups, and may also contain subgroups not present in the 

developer’s population. 

 

Using clinical populations for development and cross-validation is generally a good 

strategy for countering the spectrum effect. A better strategy is to identify important 

subgroups amongst the cases and to report classification accuracy by subgroup [Mulherin 

& Miller, 2002]. This allows intending users who have a different, but known, composition 

of subgroups, in their local clinical population to calculate the local accuracy and efficacy 

of the new putative diagnostic practice.             

 

There is a variation of the subgroup effect which has been named ‘population drift’ by 

Hand [1997]. He points out that over time clinical populations can change, sometimes 

relatively rapidly for various reasons such as change in causative factors, changing 

demographics, successful prevention or intervention, or other factors. Underlying this 

change it is likely that the mix of subgroups, which make up the population has changed. 

By understanding the behaviour of classifier in reference to important subgroups and 

having awareness of the changes in subgroup composition which are occurring, then it may 

be possible to tune a classifier to a changed population without wholly re-developing it. A 

related concept ‘case-mix’, has been found to be very useful in looking at resource 

utilisation in health services, and provides a good explanation of differences in hospital 

service utilisation such as length of stay, and costs.  

    

 

 

 71



Chapter 3         Evaluating Diagnostic Classifiers 
 

3.4 Conclusions 
 

A classifiers accuracy can only be measured by comparison with another classifier, “The 

Gold Standard”, which should be the either best possible or one of the best possible 

classifiers for a particular classification problem. 

 

There are several widely used measures (or statistics) of a classifier’s accuracy, and some 

of these have more than one name.  These include the Proportion Correctly Classified 

(AKA [Also Known As] Accuracy), the Misclassification Error Rate (AKA Error Rate), 

Sensitivity (AKA True Positive Rate), Specificity (AKA 1 – False Positive Rate), Positive 

Predictive Value (PPV), Negative Predictive Value (NPV) and the Area Under the ROC 

Curve (Az). All provide some form of unique information about a classifier and each is an 

appropriate measure for consideration in an appropriate context. The most general for 

comparing classifiers is Az  (the Area under the ROC Curve). However when it comes to 

the application of a classifier in a specific clinical context, Sensitivity and Specificity are 

more important as considerations. And when it comes to interpreting the result of a 

classifier for individual patient, PPV and NPV are the important considerations. 

 

Regardless of the classification accuracy measure used, it is likely to be optimistically 

biased (that is makes the classifier look better than it really is), if it is derived from the 

same training dataset, which was used to develop the classifier. This is because all 

classifiers “Overfit”, that is they capture chance-variation (which is unique only to that 

training dataset sample) and use it to classify cases in the training dataset. The “over-fitted” 

unique-to-training dataset sample chance-variation will not generalise to any other samples 

drawn from the same population as the training dataset sample. As a result the accuracy of 

classification of new cases from this population will in actuality be less than estimated from 

the training dataset. 
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The obvious solution to this problem is to derive measures of classification accuracy by 

applying the classifier to a second independent very large dataset of cases, which has been 

randomly drawn from the population of interest. This is known as a large cross-validation 

test dataset. If the supply of case data is large and inexpensive, then this is the appropriate 

strategy.  

 

However in Psychiatry (and in medicine in general), the supply of cases is limited and/or 

the cost of data collection per case is expensive. The best alternate strategy is to use 

Bootstrapping: a re-sampling with replacement technique used to create a large number of 

slightly different datasets (bootstrap datasets with N equal to the original dataset), derive 

the classifier many times by using these datasets, validate each of these classifiers on the 

original dataset, calculate the optimistic bias for each bootstrap derived classifier, find the 

average optimistic bias, and subtract this figure from that of a classifier derived using the 

whole training dataset, to obtain a corrected estimate for the classifiers accuracy.  

 

Finally it is important to be cognisant of “Spectrum Effects”. This is the differential 

accuracy of a classifier amongst different population subgroups to which it is applied. 

Though the same number and kinds of subgroups may exist in similar clinical settings, the 

mix (the relative proportions of individual subgroups) can differ from one setting to 

another. These differences can lead to unexpected differences in classification accuracies, 

in different applied settings, or in the same population if the subgroup mix has changed. If 

we know the relative accuracies of a classifier amongst subgroups, and we have knowledge 

of the subgroup composition of a site being considered for application of the classifier, then 

we can calculate both: the overall accuracy of the classifier at this new site and; the efficacy 

of application of the classifier to individuals from different subgroups.    
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