Appendix 2
ARTIFICIAL NEURAL NETWORKS:

A HisTORICAL & TECHNICAL
OVERVIEW

A2.1 Historical Background

Turing’s Theory of Finite State Automata

In the 1950 the mathematician Alan Turing first proposed that the human brain functions
as a computer. His theory was that both brains and computers belong to a class of
machines, which he named ‘Finite State Automata’. Furthermore he also posited that one
of the properties of all Finite State Automata is that they are all capable of computing all
computable functions. That is they all have the same computational potential. As such,
anything that can be computed by one Finite State Automata can be computed by all
Finite State Automata. An important corollary of all this is that it would therefore be
possible to construct machines (Finite State Automata), which function exactly as the

human brain, and therefore can emulate the brain and it’s functioning, in part or full.

The importance of Turing’s theory of Finite State Automata for the current thesis is that it
led directly to efforts by researchers to attempt to emulate neural behaviour using
machines. Collectively these efforts fall into an area of research that is now termed
“Artificial Intelligence” or Al. Research on Artificial Neural Networks is a one of the

approaches that has been used in the field of Al. The more general importance of
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Turing’s theory of Finite State Automata is that it predated, predicted and progenitated
the development of electronic digital computing machines, more commonly known now

as computers.

Hebb’s Theory of Learning

When learning occurs in an animal, some change(s) must also occur somewhere within
the nervous system of that animal to encode that learning. In the early 20™ century,
Sperry and others demonstrated that the human (and animal) nervous systems
functionally consisted of cells which they termed “Neurons” and that these neurons were
connected with one another [Dayhoff, 1990]. The connection between one neuron and
another neuron was termed a “Synapse”. Furthermore, it was discovered that neurons
could transmit signals to one another via the synapses, though the direction of

transmission of information at the synapse was uni-directional.

Attempting to explain the ubiquitousness of classical conditioning in animals, which
contain a neural system, Hebb [1949] speculated that synapses were the most likely
locations in a neural system where modifications could take place, because the synapses
are the junctions between individual neurons where information is transmitted from one
neuron to another. Specifically he suggested that learning is encoded by the weakening or
strengthening of synaptic connections between neurons, rather than by any change(s)
taking place within neurons or elsewhere in the nervous system. Changes at the level of
the synapse, would effectively regulate how information was transmitted and therefore

processed.
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Hebb’s Theory has been very influential in Psychology, but more importantly from the
point of view of the current thesis, it served to motivate some of the directions taken by
researchers who later investigated the development of artificial neural systems. These
researchers sought to test Hebb’s theory by constructing artificial neural systems

incorporating modifiable synapses.

Rosenblat’s Perceptron
Rosenblatt [1957] developed the Perceptron, a mathematically defined computer
architecture, which emulates the function of a single neuron. Biological neurons function

in the following fashion:

e A neuron receive inputs from other neurons by way of synapses

e These inputs can be excitatory (positive) or inhibitory (negative) and they vary in

magnitude.

e The effect of these inputs is additive over a short period of time

e If the sum of all inputs (excitatory & inhibitory) exceeds a threshold then the

neuron depolarises and fires. If the threshold is not exceeded depolarisation does

not occur and the neuron does not fire. This known as the “all or none principle”.
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The Perceptron emulates a biological neuron. It does this mathematically by:

e Multiplying each input value by a specific weight (this is analogous to the

connection strength of the synapse) to produce a weighted input value.

e Summing these weighed input values to produce a single value known as the

activation value

e Performing a step function on the activation value to produce an output value. The
step function produces a value of zero if the activation value is less than or equal

to 0, or a value of 1 if the activation value is greater than zero.

The equation for the Perceptron is:

y=f(Zn:af*Wij (A2.1)

Where y is the output value
fix) =0ifx<=0,1ifx>0 (i.e. a step function)
i is an index value for inputs from 0 to n
a; is the value input I

Wi is a weighting value used to weight input I
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Note: there are n inputs, but n+1 (0,1...n) input values. When i = 0, the value of the
input a;, is always equal to 1, this is known as the bias input. Its purpose is discussed

later.

bias input inputs

ao=1 ai az

“~~~ step function

Figure A2.1 A Perceptron

Figure A2.1 above is a schematic representation of a Perceptron, which graphically

portrays the computations presented in equation 2.1.

Rosenblatt and other early artificial neural network researchers, influenced by Hebb’s
theory, attempted to devise systems based upon the Perceptron, where the weights (wy,
w1, .. Wy ) could be adapted to produce a desired output in response to a particular input

or set of inputs.
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A2.2 Pattern Classification by the Perceptron

The basic function of a biological neuron is pattern classification. That is it divides all the
possible patterns of inputs it receives, at its synapses, into one of two classes: the class of
patterns that cause it to fire, and the class of patterns, which do not cause it fire. All
patterns of inputs must belong to one or the other of these classes and cannot belong to

both classes simultaneously, the “all or none” principle.

A pattern, which consists of the n input values to a Perceptron, can be mathematically
represented as a point in n-dimensional space. The co-ordinates of a point, which locates
the point in an n-dimensional input space, can be used to represent the measured
attributes or features of an object. For instance, in several of the studies which are
described later in this thesis, an individual’s scores on various psychiatric symptom
scales, are used to define a point in a multivariate data space (n dimensional input space)
which represents that individual (the object). Each individual has a pattern of the scores
(or other measures), and that pattern locates each individual at a specific point in the n-

dimensional data space.

If the attributes, which are used to define each pattern, are related to the membership of
each individual to one of the two classes (e.g. has a particular psychiatric diagnosis or
does not have that diagnosis), then it can be expected that the patterns of individuals
belonging to the same class will tend to be co-located in same general region of the n-
dimensional space. If the two classes are mutually exclusive in the space, then they will

each occupy a different and separate region of the n-dimensional input space. When this
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situation occurs, and a straight line can be used to demarcate a boundary between them,
then the two classes are said to be Linearly Separable in the n-dimensional space. Ripley
[1994] defines linear separability: “we say two groups are ‘linearly separable’ if there is
a linear function of the variables which is positive for one group and negative for the

other” (p 116).

az

% * % Class 0

*k*

a1

Class 1 .

wo +w1a1 +waz2 =0

Figure A2.2 A Linearly Separable Pattern Classification Problem in 2-dimensional
space

The 2-dimensional linearly separable pattern classification problem represented in Figure
A2.2 shows that all the patterns belonging to Class 0 ([J) are confined to one region of
the space and all the patterns belonging to class 1 (m) are confined to another separate
region of the space. A line (wo+ wiai + w2a2 = 0) can be used to divide the space, so that
all the patterns belonging to Class 0 fall on one side of the line and all the patterns
belonging to Class 1 fall on the other. Note the need to include a term w0, which is
effectively a constant needed to ensure that the line does not have to pass through the

origin.
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The Perceptron can be used to solve all linearly separable pattern classification problems,
such as the one in Figure A2.2 above. A Perceptron with n inputs and an appropriate set
of input weights, will always fire (output a value of 1) for all members of one class and
fail to fire (output a value of 0) for all members of the other class. The appropriate set of
weights (w0O,wl,...wn) is the same set of values as the co-efficients (w0,w1,...wn) which

define the separating line (or linear hyperplane in dimensions where n > 2).

Considering Figure A2.2, if each pattern’s values on al and a2 (its co-ordinates in the
above space) are used as inputs to a Perceptron, then a set of values can be found for the
Perceptron’s weights (in this case w0, wl and w2), which cause the Perceptron to
respond to each individual pattern with an appropriate response (0 for Class 0 and 1 for
Class 1). The question then is, how can an appropriate set of weight (wy, wy, ...., W, ) be

found which implements the desired solution to the classification problem?

Rosenblatt’s [1957] solution was the Perceptron Learning Rule. According to this rule,
the Perceptron is first initialised with a random set of weights (that is the weight vector
Wo, W1, ...., Wy .1s populated with random values) Then each pattern (the input vector 1,a;,
a, ..., ap ) is presented to the Perceptron as inputs, one pattern at a time. For each
pattern, the Perceptron uses equation 2.1 to calculate an output response, which is either a
0 or 1 (this is the equivalent of a biological neuron not firing or firing). For each such
presentation of a pattern the resultant output represents a putative classification of that
pattern into either Class 0 or Class 1 by the Perceptron. This putative classification is

either correct or incorrect (note the assignment of one class as Class 0 and the other as
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Class 1 is arbitrary). On each such learning trial (presentation of a pattern) the following

formula is used to adjust the value of each weight (including the bias input weight wy) :

W = w4y~ (A22)

Where n  is the learning rate, a positive or negative fraction below 1
y is the output generated by the pattern, its putative class

t  is the true or target output value, which denotes
the pattern’s class

1 is an index for inputs

a; 1is the value of input I
According to equation A2.2, the updated weight (w™%; ) is the previous weight (w%,)
plus the product of n (the learning rate), the difference between the correct output and the
putative output (y - t), and the input value (a; ). Thus when the putative output is the same
as the correct output then their difference (y - t) is zero and the updated weights for that
pattern remain the same as the old weights (i.e. there is no change). On the other hand
when the putative output and the correct output are not the same, then their difference is
either 1 or —1. In this case the weights for that pattern are each changed by the addition or

subtraction of an amount in proportion to the size of the input value for that weight.

Each case in the training set of patterns (cases) is usually processed many times. Cases in
the training set are processed one by one from first to last. When the end of the training

set is reached, processing recommences at the start. Each pass through the training set is
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called a learning trial. Processing continues for a number of trials, until the Perceptron

classifies all the patterns correctly.

Rosenblatt [1957] was able to show, both theoretically and empirically, that using this
learning rule a Perceptron would always develop an appropriate set of weights in a finite
number of trials, provided that the two classes of input patterns are linearly separable in
the n-dimensional input space. This holds for any value of n. Rosenblatt’s findings were
important because they showed that under certain conditions Perceptrons could be used to
discover a linear Discriminant function from data (a set of patterns with known class

membership).

However, Minsky and Papert [1969] in an influential review of research on Perceptrons
up to that date, pointed out that both theoretically and empirically, it could be
demonstrated that Perceptrons could not solve problems where the two classes of input
patterns are not linearly separable. Since many real-world classification problems are not
linearly separable and biological neural networks can also be shown to be able to learn
classifications, which are not linearly separable, they concluded that further research on
Perceptrons was a dead end, not likely to yield any practically useful results. However as
we will see in the next few sections, there are extensions, which can be made to the basic
Perceptron, which not only overcomes this limitation, but also yields some mechanisms

for solving complex classification problems.
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A2.3 The Logistic Activation Function

The activation function used in Rosenblatt’s [1957] Perceptron is a step function. The
step function is a scalar to scalar function, which abruptly changes output value from 0 to
1 at a threshold of 0 on the input value. The logistic function (also called a sigmoid
function) is also a scalar to scalar function which performs a similar mapping of input to
output, but changes output values smoothly from 0 to 1, between an interval of about —5

and + 5 on the input scale. See Figure x below

Step Function Logistic Function
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6 -5 -4-3-241 : 12 3 45 6 X
fx) =(ifx <=0,0), (ifx>0,1) (A23) fx)= 1 ! -~ (A24)
+e

Figure A2.3 The step function and the logistic function

By substituting the logistic function for the step function as the activation function of a
Perceptron, then the Perceptron is identical to a Linear Logistic Discriminant and similar
to a Logistic Regression [Sarle, 1994, Bishop, 1995, Reed & Marks 1999]. The Linear
Logistic Discriminant has been widely studied and used in the statistics literature
[Bishop, 1995]. It is generally more useful in applications to linear classification

problems than Rosenblatt’s Perceptron for several reasons.
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Firstly the use of a logistic activation function allows for the use of optimization
algorithms which can be used to find an optimum set of weights, which minimizes
misclassifications in problems where the distributions of the classes in the input space are
partially overlapping. Recall that Rosenblatt’s Perceptron Learning Rule can only be

applied to problems, where the class distributions are non-overlapping.

Secondly, unlike the step function, the output of a logistic function (and therefore the
output of a Perceptron with a logistic activation function) can vary between 0 and 1 rather
than only take on values of only 0 or 1. Under certain conditions (to be discussed later),
the case-wise output of an optimized Logistic Perceptron can be used as the Bayesian
Posterior Probability that the case belongs to a particular class. Knowing the probability
of class membership is more useful than knowing a putative class assignment. Posterior
probabilities can be combined with information about the prior probability of class
membership in a particular application setting and so as to maximize classification
accuracy in that setting [Ripley 1994, Bishop 1995]. Furthermore extending this
framework, a Loss Matrix can also be applied, along with the prior and posterior
probabilities to make classification decisions, which take into account a number of

criterion and factors.
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A2.4 The Perceptron Error Surface

One way to understand how a Perceptron can implement an optimal linear decision
boundary between two classes is to consider the relationship between variation in the

weights and variation in the Perceptron’s error.

The Perceptron Learning Rule discussed in Section 1.3.1. calculates the case-wise error
as the difference between the Perceptron output for that case (its putative classification, z
in equation A2.2) and the true classification for that case (also known as the target value,
t in equation A2.2). On the other hand, a good measure of error across a whole set of
cases (such as the training set) is the Mean Square Error (or MSE), which can be

calculated as:

N
MSE = %Z(yn ~t,)° (A2.5)

n=1

Where N = the number cases in the set
n = an index for cases in the set ranging from 1 to N
yn = the Perceptron’s putative output for case n

t, = is the true or target output for case n
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If we, again, consider the linearly separable classification problem presented in Figure 2,
and assume a Perceptron with a logistic activation function, then a plot of MSE as a
function of variation in the two main weights (wl and w2), will have a general shape like

that presented in Figure A2.4. below.

Figure A2.4 Perceptron Error Surface.

As can be seen from Figure 2.4 above, for a Perceptron there is a single unique
combination of weights at which MSE is at a minimum. Furthermore, the general overall
shape of the relationship between weights and MSE is that of a basin (Bishop 1995). The
general shape of this relationship can be generalized to any number of weights (and
therefore inputs). In weight spaces with a dimensionality of greater than 2, the shape of

the relationship is a hyper-basin.

The basin shape of the Weight-Error relationship, with its property of a single minimum

point, makes it easy for optimization algorithms to locate this minimum for a given set of
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training cases (and therefore to identify the set of values of the weights, which maximize

the accuracy of classification of cases contained in the training set).

A2.5 The Multi-Layer Perceptron

The important limitation of the Perceptron is that it can only learn to classify patterns,
which have a linear classification boundary as a best solution. That is a straight line (or a
plane in higher dimensions) can form a boundary between the two classes, which
maximally separates the two classes, so that on one side of line the majority of patterns
belonging to one class and on the opposite side of the line the majority of patterns belong
to the other class. If the patterns are linearly separable, then all the patterns on one side of

the line belong to one class and all those falling on the opposite side belong to other class.

az
Class 0

Class 1 .

wo+wiat +wzaz =0

Figure A2.5 Non Linearly Separable Classes

Figure A2.5 above gives an illustration of a classification problem where the two classes
are not linearly separable. That is it not possible to find a straight line, which can be used

to separate the two classes. Therefore, the Perceptron is not able to solve this type of
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classification problem. However the two classes in Figure 2.5 can be separated by a non-
linear boundary. That is a curve or a combination of several straight lines. This type of
classification problem can be solved by a Multi-Layer Perceptron [Rummehart &
McCelland, 1983], which consists of several Perceptrons arranged in a network with at

least 2 layers, and with interconnections between the layers.

Bias Unit

Hidden Unit Layer

Output Unit Layer

Output

Figure A2.6 A Multi-Layer Perceptron

Figure A2.6 above presents a Multi-Layer Perceptron. Each of the circles represents a
unit, which is a single Perceptron-type processing unit. Arrows represent the flow of

information.

Inputs
Units in the input layer simply pass on the input value unchanged. There is no
transformation of the input value through a step function or any other function. Each unit

in the input layer has a connection to all units in the hidden layer.
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Hidden Layer

Units in the hidden layer (called so because it is hidden from direct connection to the
outside between input and output units) are Logistic Perceptrons. Each hidden layer unit
receives an input from each unit in the input layer. Additionally each hidden layer unit
receives an input with a value of 1 from a bias unit. Each unit in the hidden layer

performs a weighted sum on its inputs. For unit j the formula for this summation is given

as:
d
s; = ng)xi (A2.6)
i=0
Where j is an index for hidden units

i is an index for inputs

d is the number of inputs

s; 1s the activation value for unit j
Xi 1s the value of input I

O

w' i 1s the weight of the connection of input i to unit j in layer 1

This is sometimes referred to as the unit’s Combination Function. The result of this
summation, commonly referred to as the unit’s Activation Level is then passed on to an

Activation Function (which is usually a logistic function) to arrive at an Qutput Value for

the hidden unit:
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d
2, = FQwx,) (A27)
i=0
Where z; 1is the value of the output from hidden unit j

f() is the unit’s activation function, usually a logistic function

Output Units

Units in the output layer (there can be one or more, but in this thesis we are mainly only
concerned with the case where there is only one), receive as their inputs, the outputs of
the hidden layer units. Like the hidden layer units, an output layer unit performs a
weighted sum on the inputs and then passes on this sum to a logistic activation function
for calculation of an output value. Thus the Output Unit is also a Logistic Perceptron.

The output of the output unit is given by the formula below, which is similar to (2.5)

above.
v =fQwi'z) (2.8)
=0
Where Yy is the value of the output from Output Unit k

w? ii 1s the weight of the connection of input i to unit j in layer 2

m is the number of hidden units
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A2.6 Equation for a Multi-Layer Perceptron

Substituting (A2.7) for z; in (A2.8), the full formula for an MLP with one hidden layer

and one output unit is:

y=f(iW£?f(Zi‘,W§?%)) (A29)
p i
Where i is an index for inputs

d is the number of inputs

X; is the value of input I, when 1=0 then x;= 1

y is the putative output value generated by the network

] is an index for hidden units

m is the number of hidden units

w'";  is the weight of the connection of input i
to hidden unit j in layer 1

w i  1s the weight of the connection of hidden unit |
to output unit k in layer 2

10 is the activation function, fix) = 1/(1+€™)

(A2.9) directly defines the Multi-layer Perceptron. It relates the output (y) for a case to an
input pattern vector (x0, x1, .... Xd) for that case. The total number weights (parameters)

in this neural network is (d+1)*m+m+1.

For example, for the MLP depicted in Figure 4. in which d =5, m=3 and there are 22

((5+1)*3+3+1) adaptable weights.
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A2.7 Classification with an MLP

The MLPs advantage over the simple Perceptron is that it can be used to generate
solutions to non-linearly separable classes, such as the one depicted in Figure A2.7

below:

Class 1

Figure A2.7 MLP solution to a problem involving non-linearly separable classes

The simple Perceptron can form only linear half-plane decision regions. That is it can
only halve a space into two regions using a straight line or linear hyperplane. If the
classification problem being addressed is linearly separable, then this capability is enough
to solve the problem. MLPs on the other hand can form more complex, bounded and
unbounded convex polygon, decision regions, usually referred to as convex hulls
(Lippman, 1987). These convex decision regions are formed by the intersection of linear

half-plane decision regions formed by each unit in the MLPs hidden layer.



Appendix 2 Artificial Neural Networks: A Historical & Technical Overview 21

Ex >

Figure A2.8. The half-plane decisions regions of 3 hidden units are combined by the
output unit, to form the convex hull decision region of a Multi-layer
Perceptron, required to solve the classification problem in Figure 2.7
(adapted from Reed & Marks 1999)

In Figures A2.7 and A2.8 above, the three lines collectively form a convex hull, which

demarcates objects belonging to class 0 from those belonging to class 1. The MLP

required to solve this problem would have 2 input units, 3 hidden units and 1 output unit.

For each hidden unit, its weights define the equation of one of the lines. The function of

the output unit is to combine the outputs of the 3 hidden units and therefore assign each

pattern to either class 0 or class 1.

,

(a) Perceptron (b) MLP few hidden units (¢) MLP many hidden units

Figure A2.9 Decision boundaries (a) a Perceptron, (b) an MLP with a small number of
hidden units (c) an MLP - large number of hidden units. Adapted from
(Bishop 1995).

Figure A2.9 demonstrates that by adding hidden units, successively more complex MLPs,

can be constructed, which have successively more complex class decision boundaries.
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A2.8 Multi Layer Perceptron Error Surface

MEE

wl
Local Miwima

Glabal Minima

wi

Figure A2.10 Multi-layer Perceptron Error Surface. Adapted from Bishop (1995)

Figure A2.10, above, depicts the Salient features of the error surface of a Multi-Layer
Perceptron which is obtained by plotting the networks MSE as function of variation in the
values of the weights. For the purposes of exposition, only two weight axes are shown.
In reality an MLP would have a weight space with a much higher dimensionality. The
true error surface of an MLP would be a function of all the weights, not just two. The
error surface of a single Perceptron is generally a basin, with a single minima. The error
surface of an MLP is generally a more complex manifold with possibly many minima
separated by saddle points. One of these many minima is the global minima. That is the

point on the error surface with the lowest possible MSE. All the other minima are local
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minima, which by definition have an MSE which is greater than that of the global

minima.

The values of the weights associated with Global Minima represent the best possible set
of weights for the MLP to maximally classify cases to their correct class. The weights
associated with Local Minima may also represent relatively good solutions, which may
give classification accuracies not far worse than those obtained at the Global Minima.
Minima on the error surface are generally separated by saddle points (also called local
maxima). The MSE of saddle points is generally relatively high. The weights associated
with saddle points and other regions of the error surface with a high MSE represent sets

of weights, which are poor solutions to classification problems by the MLP.

Thus in order to find the best solution to a classification problem using an MLP, we need
a method for finding the set of weights associated with the Global Minima of the MLPs
error surface. If we are only interested in relatively good solutions, then we only need a
method, which can locate local minima. As we shall see there are, available, several

methods (algorithms) which, can be used to locate minima.
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A2.9 Back-Error Propagation

The algorithm that is most often used to locate a minima on the Error Surface of a Multi-
Layer Perceptron, and therefore to locate a set a weights which can provide relatively

good solution to classification problem is called Back Propagation of Errors.

It was known in the 1960s that MLP type arrangements of Perceptrons into
interconnected layers could be used to solve non-linearly separable classification
problems (Dayhoff, 1990). However what was not known, at that time, was a method for
finding an appropriate set of weights for the MLP as a whole, given a training set of
cases. The Perceptron Learning Rule cannot be applied to an MLP because it relies upon
correcting the weights by an amount proportional to the error. The hidden units of an
MLP (which by definition are not connected to outputs) have no correct response against
which they can compare their activations and ascertain a level of error. Thus the
Perceptron Learning Rule, which can be used adjust the weights of output units, cannot

be used to adjust the weights of the hidden units.

What is needed is a way to ascertain error for hidden units. As well, the error needs to be
individually ascertained for each hidden unit, because whilst one hidden unit may need to
make large weight adjustments because it is way off target, a neighbouring hidden unit
may only need to make relatively small weight adjustments, because it is very close to

it’s target. This became known as the Credit Assignment Problem (Bishop, 1995).
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A solution to the Credit Assignment Problem, Back-Propagation of Errors (BackProp),
seems to have be independently discovered by several investigators, but is generally
attributed to Werbos (1974). One of basic insights for BackProp is that for an MLP, as
with the Perceptron, for every possible set of values of the weights there exists a
corresponding error value, which measures how well that particular set of weights
segregates the cases in the training set into two classes. The lower the error, the better the
segregation. The goal of the BackProp algorithm is to find a particular set of weights,
which produces a relatively minimum value of the error and therefore a relatively

maximum segregation of cases into classes.

The Error Surface of an MLP (The surface which results from plotting error for a
particular dataset as function of all possible values for the weights: Figure 9) is generally
more complex than the corresponding Error Surface of a Perceptron (Figure 4). The MLP
Error Surface can contain many minima, one of which will be a global minima (the best
possible solution) and the others being local minima, some of which represent relatively
good solutions (almost as good a the global minima), whilst others would be relatively

poor solutions (much worst than the global minima).

BackProp is a gradient descent algorithm, which will usually find a good minima.
(Bishop 1995, Reed & Marks 1999) It starts at random point on the error surface
(weights are initialised to a set of random values). It then works out which direction from
this point is a downhill direction on the error gradient (that is a direction which points

towards a minima) and then takes a small step in this direction, by making small
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individual changes to each weight. From this new point on the Error Surface, BackProp
again works out which direction is pointing down the error gradient (towards a minima),
and again takes a small step in this new direction. This procedure of repeatedly taking
small steps downhill from wherever point it is at, continues until BackProp reaches a

point where no step in any direction is a downhill step (which by definition is a minima).

The general concept of searching for a minima by gradient descent on an Error Surface is
for the most part a simple idea. The difficult and critical part, which Werbos (1974) was
able to solve, is how to determine the direction of each step, so that the step is in a
downhill direction on the local error gradient and therefore in the general direction of a
minima. Since the Error Surface is a function of the weights, then the direction that needs
to be determined is a direction in weight space (that is a space with dimensionality M,
where M is the total number of weights in the MLP and the axis of this space are the

individual weights).

direction D in weight space
w2

w1

Figure A2.11 Direction and movement in a two dimensional weight space
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The concept of direction and movement in weight space is demonstrated in Figure A2.11
above, using a simplified two dimensional weight space. For an MLP, the actual
dimensionality of the weight space (M) will be much higher, but all the principles
illustrated in Figure A2.11 still apply. From point A (black dot), movement of any
distance in any direction in 360 degrees is possible. A movement from A to B (white dot)
is a movement of distance d in direction D. This movement can be decomposed into two
constituents: a movement of distance x in direction wl and a movement of distance y in
direction w2. In the higher M dimensional weight space of an MLP a movement from a
point A to a point B can similarly be decomposed into M movements of set distances in

directions parallel to the M weight axis.

The BackProp algorithm takes a step (makes a move) in weight space by individually
determining the magnitude of the distances that it needs to move in the direction of each
weight axis. The goal of the BackProp algorithm is to always take a step in the general
direction of an Error minima. To accomplish this the algorithm needs to make larger
distance moves along weight axis that have a steep error gradient (i.e. give more
reduction in error for a given change in weight) and smaller distance moves along weight
axis, which have less steep error gradients. The size of the move along any particular
weight axis is proportional to the steepness of the error gradient Therefore the BackProp
algorithm needs a method(s) for calculating (or estimating) the error gradient for each of

the M individual weight. That is a method for determining the amount of change in error
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that will result from a given change in the value of a weight. Mathematically this ratio is

called the derivative of the error with respect to the weight:

AE _dE (A2.10)
Aw  dw
Where AE 1is the change in error

Aw is the change in weight

dE . o . .
T is the derivative of error with respect to the weight w
w

Because the direction given by this method is only an estimate of the general direction of
a minima, then the BackProp algorithm, conservatively, only takes a small step in this
direction. That is it only makes small change to each weight, which is proportional to the
estimated magnitude error gradient of that weight at that point on the Error Surface. The

basic weight update rule for BackProp algorithm is:

Aw:—nd—E (A2.11)
dw
Where n is a learning rate parameter, which is usually a small fraction e.g. 0.1

Aw is the amount by which the weight is changed
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Werbos (1974) and others have shown that, provided the individual unit’s activation
functions are differentiable (the logistic function is a commonly used differentiable
activation function), then the chain rule for derivatives , which is a basic technique in
algebra, can be applied to efficiently calculate the value of the error derivative for each
weight. This inturn allows the BackProp algorithm to calculate a value by which to
change each weight (using equation A2.11 above), so that the resultant small step it takes

on the error surface is in the general direction of a minima.

Using the chain rule, the derivative of error with respect to a given weight can be
decomposed into two, simpler (to calculate), derivatives: the derivative of error with
respect to the units activation level and; the derivative of this activation with respect to

that given weight. Applying the chain rule:

da,
dE _dE 4 5. (A2.12)

= ) =6z,
dw, da, dw,

Where dE da .
—=0, and L=z
da, ' dw
. Ji
1 is an index for inputs
] is an index for units
E is a measure of error for the whole network
aj is the activation level for unitj, a, = ZWﬂ.zi

wji  1s a weight for the input from 1 to unit j
zZ; is the value of the input from i

9; is the error of a unit j, it is calculated differently for output
units versus hidden units
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We already have values for z;s so all we need to do is calculate the values for ;s. For an

output unit, dy is calculated by again using the chain rule to substitute partial derivative:

_dE _dE dy,

0, =—
“ da, dy, da,

==y (7w, (A2.13)

Where dE dy
—=(f— and ko - W
&, (t=y) da, fa)=f (Ej z,wy)

f () is the derivate of the activation function
f(x)= f(x)(1- f(x)) for a Logistic Activation Function
t is the true or target value of the output from the training set
yk 1s the output value for output unit k
] is an index for hidden units
Z; is the output of hidden unit j
wij  1s the weight connecting hidden unit j to the output unit

k is an index for output units, usually there is only 1 and k=1

For hidden units, §; can be calculated, by again applying the chain rule to substitute
simpler (to calculate) partial derivatives:

S - dE _ dE.dak
" da;, da, da

=w,0,f (a;) (A2.14)

J

dE
Where  da, ;

Ok 1s the error of output unit k to which hidden unit j sends its output

da .
=w,0, and d_k:f(aj)

wy 1s the weight of the connection from hidden unit j to output unit k

a; is the activation value for the output unit
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In summary then, the algorithm for Back-Error Propagation is:

Start with a set of weights initialised to random numbers

Examine the first case in the training set

For the current case forward propagate from inputs through to the output unit to
arrive at a putative output, using equation (A2.9)

For the output unit compute an error signal d .using equation (A2.13)

For each hidden units compute an error signal §; using equation (A2.14)

Adjust all the weights in the output unit and all the hidden units using the formula:

w = W;ld -7 5]‘21 (A2 15)

g
Where H is a learning rate parameter, which is usually a small fraction e.g. 0.1
d; 1s the error of unit j
z; 1is the output of unit I (which is feeding into unit j)
wi; 1s the weight to unit I from j

] is an index for hidden units

Proceed with the next case in the training set, repeating 3,4, 5 and 6 above.

Continue processing all the cases, starting again at the first case after the last case
has been processed (one pass through the training set is called a learning trial),
until the MSE reaches a predetermined minimum or some other criteria is reached

(eg. Maximum number of learning trials)
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Unlike the Perceptron learning rule, Back-Error Propagation is not guaranteed to always
converge to the best solution. This is because it is possible for the algorithm to find a
local minima rather than the global minima. Whether or not the algorithm finds a local
minima or the global minima depends upon three things: the nature of the Error Surface
for a particular problem (the number and distribution of minima); the starting point (the
randomly set initial values for the weights), and the learning rate. As we will discuss
later, all three of these can be addressed so as to maximise the chances of finding a good

solution.

The Back-Error Propagation algorithm is a Gradient Descent algorithm. Each time the
algorithm changes the value of a weight, it does so by using information about the
gradient of that weight with respect to error (the derivative of the error with respect to
the weight is this gradient) to take a step (of size n) in the direction of reducing error. By
changing all the weights in the MLP in the direction of reduced error, each back-
propagation step is a step downhill (descending the error gradient) from whereever it is
before taking that step. If the goal is to minimize error on the training set then an
appropriate place to stop is when taking a step always results in going uphill (increased
error). This stopping point could be the “Global Minimum” (the point of absolute
minimum error), which is best possible set of weights, for solving the classification
problem, presented by the training set. It could also be a “Local Minimum” (a local low
point in the error surface, which is not the lowest possible). Some local minima may
provide a relatively good solution, even if it is not the best possible solution, for that

training set. If the starting point is, by chance, uphill from a local minimum with very
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steep sides, then the algorithm will simply walk downhill into it and stop there. If the
sides are not very steep, the algorithm may be able to step out of that minima and

continue onwards to search for a better minima.

60 + Local Minimum

Error

20 +

Global Minimum

Trials

Figure A2.12 Training Set Error by Trials of Learning. In this example, as training
progresses the Back-Error Propagation algorithm encounters a local
minimum at about 100 trials, which it passes through and eventually
finds a global minimum at about 500 trials.

The graph in Figure A2.12 can be directly associated with the error surface depicted in
Figure A2.10. If the initial random small weight values start the algorithm high up the left
wall of the local minima, then by using gradient descent, the Back-Prop algorithm may
follow a course along the error surface depicted in Figure A2.10, which traces the path (in
terms of change in error over trials), depicted in Figure A2.12. In this case the global
minima, found at 500 trials in Figure A2.12 above, corresponds to the Global Minima

depicted on the right hand side of the error surface of Figure A2.10.
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Figure A2.13 below demonstrates the trajectory of the BackProp algorithm through a
weight space (defined by wl and w2), and across a corresponding Error Surface, from a
starting point on the edge of the error surface, towards an error minima. The concentric
ellipses are iso-error contours, centred upon the minima. The trajectory in Figure A2.13
can be associated with a segment of the learning curve in Figure A2.12 ranging from 300

to 500 trials.

w2

minima

w1

Figure A2.13 Trajectory of the BackProp algorithm through weight space, towards an
error minima. Adapted from Reed & Marks 1999.

The learning rate (n) determines the size of each step the algorithm takes. If the step size

is too small, then gradient descent makes it more likely that the algorithm will walk into a
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depression in the error surface (i.e. a local minimum), which it can’t step out of (because
the step size is too small). Too large a learning rate can also be problematic. Taking large
steps will help avoid local minima by stepping over them and through them, but it may
also make the algorithm step out of the gradient leading to the global minima and thus
make it difficult to converge to the global minima. This will tend to make the algorithm
walk around the error surface always missing the global minima (and local minima) and

never find a good solution.

As will be discussed later there are steps than can be taken to condition the problem,

which improve the likelihood of finding good solutions.
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A2.10 Modifications to Back Prop

Online Vs Batch Learning

The description of Back-Propagation given above is for the online version of the
algorithm, which updates the network weights after processing each case. There is
another version, the Batch Processing version, which updates the weights after processing
all the cases in the training set in one pass. This is achieved by accumulating ds and zs

from each case and substituting in equation (A2.15) to get:

Wi =will = 5"z (A2.16)

Where n is an index for cases in the training set

The fundamental difference between online and batch learning is that in online learning
there are N steps (where N is the no. of cases in the training set) along the error surface
for every one step taken by batch learning. The single batch step is a summated step of N-
steps that would be taken by online processing. However the paths along the error surface
taken by these two versions of the Back-Prop algorithm can be very different. This is
because, the size and direction of each step is determined locally for each weight and
takes place from a location that is determined by where the last step left off. Both
versions will locate minima, but because they take different paths may locate different

minima.
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Momentum
Momentum involves the addition of a term to the weight update rule (A2.15 or A2.16),

which is proportional to the size of the last weight update:

new new

W' = w4 AW + aAw™ (A2.17)

Where AW™ =—-noz  asin (A2.15) for the current weight update

AW = -1z as in (A2.15) for the previous weight update

o is the momentum term a fraction between 0 and 1, which
determines, the proportion of the previous weight update
that is added to the current weight update

Thus if the last weight update was by a large amount, the weight is updated by a greater
amount. If the previous weight update was small then only a small amount is added to the
weight update. This has the effect of smoothing the trajectory of Back-Prop over the error
surface. It keeps the trajectory going in the same general direction as the previous step,

and prevents abrupt changes in direction taken in just one or a few steps.

Momentum also has the effect of amplifying the learning rate, but in a proportional sense.
When the algorithm has been taking large steps, then it will continue to do so for a few
more steps, but as the steps get smaller, momentum also gets smaller. This helps the
BackProp algorithm to escape from local minima, but to stay in the vicinity of the global
minima, because local minima are shallower, thus improving the chances that training

will terminate at the global minima.
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QuickProp

QuickProp is an algorithm developed by Fahlman (1987). Like BackProp it is a locally
adaptive method. That is it makes changes to individual weights in an attempt to move
from the current position towards a minima on the error surface. Where it differs is in

how it calculates the weight change amount. QuickProp makes two important

assumptions:

e The error surface for each weight, from any point on the error surface, can be

approximated by a parabola that opens upwards.

e The change in slope of the error for each weight is independent of the other

weights that change at the same time.

The basic weight change rule for QuickProp is:

9E o

Aw(t) =— dw A =1) (A2.18)

%(l‘—l)—%(f)

Where  Aw(¢) is the current weight change amount

Aw(t —1) is the previous weight change amount

dE Is the derivative of the current weight with respect to error and is
E(t) calculated the same as in BackProp using equation (2.10)

dE | Is the derivative of the previous weight with respect to error
E(t ~D and is calculated the same as in BackProp using equation

(2.10)
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This weight update rule rests upon two relations:

dE dE
%(1‘—1)—%(1)

which is a finite difference approximator of the
Aw(t—1)

Firstly ,

second derivative, and secondly the equation as whole approximates Newton’s method

for finding the minima of a one-dimensional function, which is:

() Ax=— ]{8 (A2.19)

As a result, what the QuickProp algorithm is attempting to do, is to locate the nearest
minima in one single step. If the assumption that error surfaces has a multivariate upward
parabolic shape is correct it will find it. Mostly though, this is not exactly correct and
QuickProp either overshoots or undershoots the minima. If it overshoots (sign of the first
derivative changes) it then moves backwards to a point intermediate between the previous
position and the current position. If it undershoots (sign of the first derivative is the same
as previous) it will take another step forward, by recalculating A2.18 from this new point.
Normally on an undershoot, the value of the first derivate should reduce (as it would if
the local error surface is parabolic) and so the next step size will be smaller. If the value
of the first derivative is the same as larger as in the previous step, it indicates that the
assumption of a local parabolic error surface is grossly incorrect and QuickProp will then

default to gradient descent for that move. As well there is a maximum growth factor
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parameter (usually 1.75), which limits a weight change to that growth factor times the

previous weight change.

A2.11 Other Optimisation Algorithms

The popularity of BackProp, QuickProp and other variants of Back Error Propagation for
the selection of a set of the weights in an MLP that minimize error, ignores an extensive
body of research work, which normally goes under the name of numerical optimisation
(Sarle, 1999). These other optimisation algorithms are generally much faster, and often
they locate the global minima of a training set more accurately. However they are all
affected by ill conditioning and there is no evidence that they generalize any better than
the Props (Bishop 1995, Sarle 1999, Reed & Marks 1999). As well the Props are the only
algorithms which can be implemented locally, at each Perceptron type unit. All the others
require network wide information. This has important implications for possible hardware
implementations of neural networks. It allows for the development of scalable parallel
distributed information processing hardware, which can be built up by interconnecting

any number of individual hardware implementations of Perceptron type units.

A2.12 Universal Function Approximation by MLPs

Regardless of which method is used to optimise the weights, the basic function of an
MLP is to learn and approximate the mapping a set of D input variables to a set of M
output variables from a set of N examples A learning example in the training set can also

be referred to as a case or as an input pattern, these terms are synonymous. The set of
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examples used for learning is normally referred to as the training set. The number of
input units an MLP has, is determined by the number of input variables (D) in the training
set. Similarly, the number of output units an MLP has, is determined by the number of
output variables (M) in the training set'. The number of hidden units an MLP has can be

varied almost indefinitely.

The intrinsic mapping between the input and output variables, is also referred to as the
target function. That is, it is the function, which the MLP, through training, is trying to
learn to approximate. By systematically increasing the number of hidden units in an
MLP, progressively more complex target functions can be potentially approximated. The
upshot of this is that the degree to which an MLP is able to approximate a given target
function can be systematically adjusted upwards by systematically increasing the number

of hidden units.

MLPs have the important property of being universal function approximators (Reed &
Marks 1999, Bishop 1995). That is MLPs are capable of approximating any bounded
target function to any arbitrary degree of accuracy, if enough hidden units are available.
All target functions, including arbitrarily determined functions, have a finite complexity.
Since an MLP can have an infinite number of hidden units, and the complexity of the
function mapping increases with the number of hidden units, then an MLP with “enough”
hidden units can be used to map any input-output function exactly. Progressively

increasing the number of hidden units ramps up the complexity of the MLP

" In most clinical decision making problems, and for all the problems considered this thesis M=1. That is
there is only one output variable.
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approximation mapping, until it matches the complexity level of the target function, in

which case the approximation is at its best.

Bishop (1995) presents a proof of this proposition, which makes use of Kolmogorov’s
theorem, which inturn is a proof that every continuous function of several variables (for a
closed and bounded input domain) can be represented as the superimposition of a small
number of functions of one variable. An MLP with “enough” hidden units can map any
required function exactly. With less than “enough” hidden units, an MLP approximates a
given target function. As the number of hidden units increases, towards the number
(“enough”) which is required to map that given target function exactly, then the accuracy

of that approximation increases.

The relationship of input patterns to output values, embodied in training set, is the target
function, which an MLP learns to approximate during training. After successful training
(by any method), the MLP is able to generate an appropriate output to a given input
pattern. In the case where the mapping has been learned exactly then the exact output
associated with a given input pattern can be generated on presentation of that input
pattern. If the learned mapping is not exact then not all putative outputs will be the same
as those “expected” in the training set. The better the approximation the better the match

between the putative outputs of the MLP and their expected value from the training set.

For classification tasks, an MLP performs its input-output mapping by segmenting the

input space into regions, using convex hulls or polygons as shown in figure A2.9. Given
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enough hidden units an MLP can learn any arbitrary class membership mapping. That is
mapping where the class of a case represented by a point in an input space is arbitrarily
assigned, so that cases with the same class membership do not necessarily co-inhabit the
same regions in the space. The function being approximated in this case is arbitrarily
determined, but it can none-the-less be approximated (Reed & Marks, 1999, Bishop
1996, Ripley 1994). An example of such an arbitrary mapping would be to use data from
a telephone book to train an MLP to output a telephone number in response to inputs
consisting of a name and an address. In this example every case in the training set

belongs to a class of its own, which is nominated by a telephone number.

However from the point of view of Clinical Decision Making in Psychiatry, the focus of
thesis, we are not interested in arbitrary mappings (that come about as result of
relationships to variables not contained in the dataset), but in the deterministic mappings
that come about as the result of some causative process. That is the location of cases in
the input space is determined by (or more correctly, is associated with) the class
membership of that case. In such cases, where the mapping is non-arbitrary (or
deterministic), it should be possible to generalise the learned function (mapping) to other

cases drawn from the same population.
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A2.15 Regularization

A classification problem presented to an MLP can be said to be “well posed” when:
a There is only one unique solution.
a The solution varies continuously (i.e. it is smooth) within the range of the given

data

Well posed problems are relatively easy to solve and can yield a solution which
generalizes well, conversely an ill posed problem is difficult to solve and obtained

solutions will not generalize well.

The general idea behind regularization is to restate an ill posed problem as a well-posed
problem (Reed & Marks, 1999). The strategy is to restrict the range of the search for
solutions, only to those that are smooth (that is, functions where small changes in input
values do not cause large variations in the output values). In practice, this is achieved by
modifying the solution search algorithm (e.g BackProp), so that it penalizes solutions,
which are not smooth. This introduces a bias in favour of choosing a smooth function as

potential and final solutions.
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Weight Decay

Large weights in an MLP cause sharp transitions in output values for small changes in
inputs. Thus any potential solutions which contain large weights are no likely to
generalize well, relative to other potential solutions that do not contain large weights.
Weight Decay is a regularization technique used in MLPs. It penalizes large weights. So

the MLP is biased towards solutions with smaller weights.

Weight Decay is implemented by adding a term (-Bw) to the weight update equation

(A2.11) so it becomes:

new __ _ old old
W =W oz — fw (A2.22)

Where B is a small fraction, which multiplied by the old value for the
weight and the result subtracted from the old weight to reduce
the size of the new weight by an amount proportionate to the
size of the old weight.

The impact of weight decay is to reduce the size of weights. Large weights are reduced
by large amounts, whilst small weights by only a small amount. This reduces the impact
of outliers in the training set. Without weight decay the training algorithm, will recruit a
weight(s) to accommodate an outlier. This leads to a value for a weight(s), which is larger
than it would be if the outlier did not exist. Each time an outlier is processed by the
training algorithm, to perform weight updates, the size of a particular weight(s) is

increased until it is accommodated. Processing of the other cases uses other weights to

accommodate them and leaves the weight(s) associated with the outlier unaffected.
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Weight decay operates across all cases in the training set and on all weight updates, thus
it will impact more on weights associated with outliers than on weights associated with

non-outliers.

Jitter

Jitter is another regularization technique. Earlier in this chapter, it was reported that Reed
& Marks (1999) and others have demonstrated that the addition of noise (random
variation) in the values of the inputs reduces generalization for a given training set size.
Thus it seems at first Paradoxical that jitter, a technique that involves the introduction of
small amounts of noise (random variation) to input values in the training set, is a form of

regularization, which can improve generalization.

The key difference is in how noise is added. In the procedure used by Reed & Marks
(1999) to demonstrate the deleterious impact of noise, each input value was transformed
(corrupted) by replacing the original value with another value, which is the original value
+/- a random small amount, drawn from a normal distribution with a mean of 0 and a
standard deviation, which is a small fraction of the standard deviation of the input
variable. The size of the training set after the addition of noise is the same as before the

addition of noise, but the input values have been corrupted by noise.

In Jitter, the original input cases are retained in the training set with their original input
values unchanged. New derived cases are created by taking the input values of a case and

replacing the original input values with another value, which is the original value +/- a
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random small amount, drawn from a normal distribution with a mean of 0 and a standard
deviation, which is a small fraction of the standard deviation of the input variable. The
new derived cases are then added to the training set. Thus the new training set created by
this procedure can be many times the size of the original training set and includes the

original training set within it as a subset.

A jittered training set, implicitly embodies a “smoothness assumption” (Bishop 1995,
Reed & Marks 1999). The impact of jitter is to smear the point value (in the input data
space) of each case in the training set. The original value is the centroid of that smear. As
a result more of the input space is accounted for by the presence of a training set point.
This in turn requires less interpolation between training set points by the training
algorithm. Because the smear around each original data point is normally distributed
about that point the original deterministic function, which the training algorithm is trying
to learn is preserved. The presence of the new smeared cases distributed and centered on
the original case forces only smooth interpolations of the original training set cases and

therefore biases against functions, which are not smooth.
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Early Stopping
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Figure A2.17 Training Set Error and Test Set Error as a function of sequential trials of
learning. Adapted from Reed & Marks 1999

As learning proceeds, an MLP obtains progressively lower and lower levels of Training
Set Error. This progress can be interrupted by short periods of rise in Training Set Error,
attributable to local minima as seen in Figure A2.17 above, but in the long run the trend
of Training Set learning curve is diminishing error, which becomes asymptotic to a value
after a large number of trials. In Figure A2.17 above, training beyond 1000 trials is

unlikely to yield any significant reductions in the Training Set Error.

Figure A2.17 also displays a curve for the Error obtained on a large independent Test Set
as learning progresses. Initially the Test Set Error curve shadows the Training Set Error,
but at a higher level of error. As learning progresses there eventually comes a point where

the Test Set Error curve and the Training Set Error curve decouple. Beyond this point, the
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Training Set Error continues to fall, whilst the Test Set Error begins to rise. This point is

marked graph by a vertical line at just under 600 trials.

The significance of this behaviour is that the point of decoupling of the error curves is
also the point that marks the beginning of Overfitting by an MLP. Overfitting is said to
occur when the MLP has finished mapping the deterministic input-output function that is
associated with the segregation of classes in the population and then goes on to map
arbitrary input-output relationships caused by sampling variation, noise in the inputs and

error in the class assignments.

To the left of the vertical line in Figure A2.17 the MLP is Underfitting. That is it has not
yet completed mapping all aspects of the deterministic input-output relationship present
in the population as a whole. To the right of the line the MLP is overfitting by mapping
arbitrary relationships that exist only in the present Training Set sample. Maximum
generalization by the MLP will occur if training is stopped at that pivot point and the

weights from that point are used to classify new cases.

If a large independent Test Set exists, then it can be used to identify a point at which
training should be stopped, by simultaneously measuring error on this Test Set. Once this
point is identified the training can be re-run from the same starting point and then stopped
at identified point. This procedure has been shown to produce good generalization

(Bishop 1995, Reed & Marks 1999).
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If a large independent Test Set is not available, a similar procedure is to “holdout” a
fraction of the training set (say 25%) and use it as Test Set to identify the point where
Overfitting begins, when training from the remaining cases. When the overfitting point is
found, a note is made of the Training Set Error obtained at this point. The Holdout Set is
then added back to the Training Set and the MLP is trained, not for a set number of trials,
but until it obtains the same Training Set Error value that was noted at the identified

overfitting point.

Both these procedures are called “Early Stopping” because they both stop training before
the Training Set Error reaches a minima. The general idea is to maximize MLP’s

generalisation by preventing overfitting.

A2.16 Conditioning

The condition of the error surface of a Multi-layer Perceptron is a crucial determinant in
finding a good solution, which can be generalized. The error surface is said to be ill-
conditioned if it contains many features such as local minima, local maxima, saddle
points and ravines which obscure the basin of attraction of the global minima. A well-
conditioned error surface on the other hand would consist mainly of the basin of
attraction of the global minima, with the error contours of that basin being circles, rather

than ellipses or more complex curves.

BackProp and other gradient descent algorithms are local methods, which attempt to find
the global minima by identifying and moving down the local error gradient. Therefore if

the gradient direction at all points on the error surface is pointing at global minima, it will
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be found easily from any starting point. If on the other hand, the presence of other
features on the error surface distorts the basin of attraction of the global minimum, the
local gradient at some points may be pointing in another direction away from the global
minima. This will lead the algorithm to set off in a bad direction. In cases of mild ill-
conditioning, this will slow down the algorithm because it will need to traverse terrain on
the error surface until it reaches a point where the gradient points more directly at the
global minima. In cases of severe ill-conditioning the algorithm may never find a good

direction at any point and will fail altogether.

At any particular point, the condition of the local error surface can be estimated from the
second derivatives of the weights with respect to error. The matrix of these derivatives for
all the weights in an MLP neural network is called the Hesssian matrix (Bishop 1995,
Sarle 1999, Reed & Marks 1999). First derivatives are an index of the gradient of a curve.
Second derivatives are an index of the proximity of minima and maxima. If the local
error surface is well conditioned, then the ratio of the largest and smallest eigenvalues of
the Hessian matrix will be close to one. This indicates that there is strong basin of
attraction around a single minima, which has circular error contours, because all the
second derivatives are indicating the same minima. In such a situation all the first
derivative gradients are pointing almost directly at the minima. Therefore a gradient
descent algorithm like BackProp will accurately locate the global minima in a relatively

small number of steps because it will essentially walk in a straight line towards it.

If the local error surface is ill-conditioned, that is the ratio of largest to smallest
eigenvalues of the Hessian matrix is large, then this indicates that the error contours are
locally convoluted by features such as local minima, maxima, saddle points and ravines.
This inturn means that the gradients indicated by the first derivatives do not always point

directly at the global minima. Therefore a gradient descent algorithm, like BackProp, will
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tend to wander about this error surface and either take a long time (many steps) to find
the basin of attraction of the global minima, or in severe cases of ill-conditioning wander
aimlessly and never find it. Ill conditioning of MLP error surfaces, its evaluation by the
Hessian matrix and remedies to the problem are studied by Sarle (1999). Discussion of
the problem, the same and further suggestions are contained in Bishop (1995) and Reed
& Marks (1999).

The solution to an ill-conditioned error surface is to prevent it or avoid it. There are
several steps (Bishop 1995, Reed & Marks 1999, and Sarle 2000) that can be taken to

prevent ill conditioning:

Firstly scale all the input variables to the same scale, using a technique like normalization
(i.e. converting input values to z scores) or range rescaling. This has the effect of
equalizing the influence of the scale of each input on the weights and makes error

contours tend to be more circular rather than elliptical.

Secondly reduce, if possible, the number of input variables to a set, which contains only
those that have strong relevance to the classification. The lower the dimensionality of the
input space the better the condition of the error surface because the ratio of cases to
weights is higher and thus weight estimates are better determined. Increasing the
relevance of the inputs as a set improves the condition of the error surface because it
increases the prominence of important features such as minima. Strategies for reducing
the number of inputs and increasing the relevance of the input set are: a) eliminate
variables that seem to bear no relationship to outputs or; b) use a data reduction technique
such as Principal Components. Both methods have drawbacks, in terms of possibly

discarding useful information. Research into more efficient techniques for selecting an
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optimal set of inputs from candidates is an area of current interest in the literature (Reed

& Marks, 1999).
A2.17 Cross-entropy Error Function

For classification problems, where the target values are 0 or 1, replace the MSE error
function with the cross-entropy error function. The MSE error function implicitly
assumes that the distribution of the target values is gaussian (i.e. normally distributed),
which clearly it is not, because the distribution is binomial. The cross-entropy error
function more closely approximates the true distribution of the target values and therefore
gives a more accurate measure of error. Since the error surface is a plot of error against
variations in the values of the weights, the error surface plotted from a cross-entropy error

function is more accurate. The equation for the cross-entropy error function is:

E=-Y{t,Inz, +(1—1,)In(1-z,)} (A2.24)
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